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Abstract. In this paper we, firstly, introduce a new Gaussian process as an extension of the
well known bifractional Brownian motion in the form of a linear combination of a finite
number of independent bifractional Brownian motions. We have opted to call this process a
mixed bifractional Brownian motion. Secondly, we study some stochastic properties and
characteristics of this process: the Hölder continuity, self similarity, quadratic variation,
Markov property and differentiability of the trajectories, long range dependence, stationarity
of the increments and behavior of the noise generated by the increments of this process. We
believe that our process can be a possible candidate for models which involve self similarity,
long range dependence and non stationarity of increments.
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1. Introduction

Let BH,K : Bt
H,K, t ≥ 0 be a one-parameter bifractional Brownian motion, (BFBM for

short), valued in R, with parameters H ∈ 0,1 and K ∈ 0,1, introduced in Houdré and Villa
[8] as a centered Gaussian process, starting from zero, with the covariance function:

EBt
H,KBs

H,K  1
2K t2H  s2H

K
− |t − s|2HK . 1

61



62 A. SGHIR, D. SEGHIR, and S. HADIRI

Figure 1: Paths of the BFBM BH,K by using the Cholesky method
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The case K  1 corresponds to the well known fractional Brownian motion
BH : Bt

H, t ≥ 0 of the Hurst index H ∈ 0,1, (FBM for short), introduced in Mandelbrot
and Van Ness [14]. The BFBM BH,K is HK-self similar. This is an immediate consequence of
the fact that the covariance function in (1) is homogeneous of order 2HK: for any h  0,

Bht
H,K, t ≥ 0 d hHKBt

H,K, t ≥ 0 ,
where d means equality in the law of all finite dimensional distributions.
In the above figures, we have used the Cholesky method for the Gaussian process and the
software R for simulating the paths of the BFBM BH,K. The integer n is the length of the
desired sample.

The self similarity and the stationarity of the increments are two main properties for which
the FBM exhibited success as a modeling tool in engineering, mathematical finance, hydrology
and queueing theory, (we refer here, for example, to Addison [1], Cheridito [5], Comegna et al.
[6] and Taqqu [21]). The BFBM is an extension of the FBM which preserves many properties
of the FBM, but not the stationarity of the increments. Moreover, Russo and Tudor [18]
showed that the BFBM BH,K behaves as a FBM BHK of the Hurst index HK. These properties
make the BFBM a possible candidate for models which involve self similarity, long range
dependence, (LRD for short), and non stationarity of increments.

It turns out that the BFBM is related to some stochastic partial differential equations,
(SPDEs for short), (see e.g. Lei and Nualart [12] and Swanson [20]). Moreover, suppose that
ut,x, t ≥ 0,x ∈ R is the solution of the one-dimensional stochastic heat equation on R with
the initial condition u0,x  0 defined as follows:
∂u
∂t  1

2
∂2u
∂2x

 ∂2W
∂t ∂x , ∗

where Wt,x, t ≥ 0,x ∈ R is a two-parameter Wiener process. In other words, W is a
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centered Gaussian process with covariance:
EWt,xWs,y  s ∧ t|x|∧|y|.

Then, for any x ∈ R, the process ut,x, t ≥ 0 is a BFBM BH,K with parameters H  K  1
4 ,

multiplied by the constant 2 1
4 2− 1

8 . Combining this fact with the Cholesky method, we can
easily simulate the solution ut,x of the SPDE ∗, we obtain the paths exhibited in Figure 2.

Figure 2 : Paths of the solution of the SPDE (*)

Remark 1.2. 1. Because of random fluctuations, stochastic differential equations (SDEs), offer
more realistic mathematical formulations, compared to ordinary differential equations.
Moreover, in finance, for example, people extend finite dimensional systems of SDEs to
infinite dimensional SPDEs, (see Benth et al. [4]). Indeed, many physical, biological and
financial phenomena can be modeled by SPDEs. However, explicit solutions to most of the
problems do not exist. Therefore it is natural to simulate a discrete version of these SPDEs,
(we refer, e.g. to Barth and Lang [2] and Jentzen and Kloeden [9]). In case of the SPDE ∗,
we have obtained a discrete version by using only the link with the trajectories of the BFBM,
(see the left side of Figure 2), apparently for the first time.
2. Öz Bakan et al. [16] have used the SPRK scheme for the discretization of the stochastic
control problem governed by SPDEs where a maximal principle for the optimal control of the
harvesting problem is studied. They have formulated the control problem of SPDEs in terms of
SDEs with the help of matrices and vectors. In a future outlook, we shall try to follow the work
[16] for stochastic control problems governed by the SPDE ∗ by using the link with the
BFBM. It will be also interesting to find a link between the BFBM and the stochastic
quasi-linear heat equation used in [16].

The increments of the BFBM BH,K are only independents in the case of Brownian motion,
H  1

2 ,K  1, and they are not stationary for any K ∈ 0,1 except the case of the FBM,
K  1. However, BH,K is a quasi-helix in the sense of Kahane [10] : for all t, s ∈ 0,1,
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2−K|t − s|2HK ≤ EBt
H,K − Bs

H,K
2 ≤ 21−K|t − s|2HK. 2

Moreover, if we put: 2t : E Bt
H,K − Bt

H,K 2, then

 → 0

lim 2t
2HK  21−K, t  0. 3

Therefore, the increments of the BFBM BH,K are approximately stationary for small
increments: if t is close to s, then
E Bt

H,K − Bs
H,K 2 ≈ 21−K|t − s|2HK.

Since the BFBM BH,K is a Gaussian process, then for any p  0, we have

E Bt
H,K − Bs

H,K p  C E Bt
H,K − Bs

H,K 2
p
2 . 4

Therefore, by virtue of (2) and the famous Kolmogorov continuity criterion, BH,K is Hölder
continuous of order  for any   HK. Moreover, with probability one, the trajectories of the
BFBM BH,K are not differentiable and due to unbounded variation on any finite interval
(except, of course, in the degenerate case H  K  1). More precisely, for every H ∈ 0,1
and K ∈ 0,1, we have

 → 0
lim

t∈t0−,t0

sup Bt
H,K

−Bt0

H,K

t − t0
  ,

with probability one for every t0. Then according to Russo and Tudor [18], if we put:
Vt
,BH,K : ∑ i1

n−1 Bti1
H,K − Bti

H,K ,
where  : 0  t0 , . . . , tn  t denoting a partition of 0, t and ||: max

i
|ti1 − ti|, then

L1 −
||→0
lim Vt

,BH,K  0, if   1
HK ;  , if   1

HK ;  2
1−K
HK HKt, if   1

HK .

Remark 1.2. An interesting property of the BFBM BH,K is the expression of its quadratic
variation  BH,K t ,  2. The following properties hold true:
∙ If 1

2  HK  1, then the quadratic variation of BH,K is zero.
∙ If 0  HK  1

2 , then the quadratic variation of BH,K does not exist.
∙ If HK  1

2 , then the quadratic variation of BH,K at time t is equal to 21−Kt.

The last property is remarkable. Indeed, for HK  1
2 we have a Gaussian process which

has the same quadratic variation as a Brownian motion. Moreover, BH,K is not a
semimartingale if HK ≠ 1

2 . Nevertheless, a stochastic integral with respect to the BFBM was
developed, (see, for examples, Es-Sebaiy and Tudor [7] and Russo and Tudor [18]).

To end this account on facts about BFBM, we present a useful decomposition in the law of
BH,K. This was given and used by Lei and Nualart [12] to yield the 1

HK -variation of BH,K, and
also used by Maejima and Tudor [13] to prove that the incremental process of BH,K is
approximately stationary for large increments. In fact: let W : W, ≥ 0 be a Brownian
motion independent of BH,K, then for any K ∈ 0,1, let XK : Xt

K, t ≥ 0 be the process
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defined by:

Xt
K : 

0


1 − e− t−

1 K

2 dW.

Then XK is a centered Gaussian process with the covariance function

EXt
KXs

K  Γ1 − K
K tK  sK − t  sK.

This process is characterized by trajectories which are infinitely differentiable on 0,
and absolutely continuous on 0,. This fact will be useful in the sequel, particularly in
section 6.

The authors of [12] showed the following decomposition in the law of the BFBM BH,K:

C1KXt
H,K  Bt

H,K ; t ≥ 0 d C2KBt
HK ; t ≥ 0, 5

where Xt
H,K : Xt2H

K , C1K  2−K K
Γ1−K

and C2K  2
 1− K

2 .

The rest of this paper is organized as follows. In section 2, we define our new process and
we called in short MBBM, and calculate its covariance function. As an application, we study
the Hölder continuity and self similarity of its trajectories. In section 3, we study the quadratic
variation of the MBBM by using that of the BFBM and the second moment of increments of the
BFBM. In section 4, we deal with the Markov property of the MBBM by using the famous
result of Revuz and Yor [19] concerning the case of Gaussian processes. In section 5, we prove
the non-differentiability of the MBBM, and follow a classical argument used by Houdré and
Villa in [8]. However, in section 6, we study the -differentiability of the MBBM via a local
Hölderian behavior. Finally, in the last section, we study the LRD of the MBBM and the
limiting process of the increments process of the MBBM. This last fact is to be explained from
the perspective of the noise generated by the MBBM. The paper ends with a conclusion and an
outlook on future studies, on further research questions and applications. We believe that our
process can be a possible candidate for models which involve self similarity, LRD and non
stationarity of increments.

2. Definition and Preliminary Properties

Definition 2.1. Let m ≥ 2 an integer, a  a1, . . . ,am ∈ Rm\0, . . . , 0, H  H1, . . . ,Hm
∈ 0,1m and K  K1, . . . ,Km ∈ 0,1m.
We call mixed bifractional Brownian motion, (MBBM), of parameters a, H and K, the process
denoted by NH,K : Nt

H,Ka, t ≥ 0 , and defined on the probability space ,F,P as
follows:

Nt
H,Ka :∑

i1

m

aiBt
Hi,Ki , ∀t ≥ 0,

where Bt
Hi,Ki , t ≥ 0 , i  1, . . . ,m, are m independent BFBM of parameters Hi and Ki defined

on ,F,P.

Example 2.1. In the case: K  1, . . . , 1, we find the process introduced in Thäle [22].
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Figure 3: Paths of the MBBM NH,K,m  2, by using the Cholesky method

In particular, for m  2, if H1  1
2 , H2 ∈ 0,1 and K  1,1, we find the mixed

fractional Brownian motion introduced in Cheridito [5] to present a stochastic model of the
discounted stock price in some arbitrage-free and complete financial markets. This last process
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was studied later by Zili in [25]. Now we are ready to study our process. We begin by the
Hölder continuity and self similarity of its trajectories via the calculation of its covariance
function.

Lemma 2.1.
(i) The MBBM NH,K is a centered Gaussian process starting from zero.
(ii) For all s, t ≥ 0, the covariance function is given by:

CovNt
H,Ka,Ns

H,Ka ∑
i 1

m ai
2

2Ki
t2Hi  s2Hi Ki − |t − s|2HiKi , 6

in particular, for any t ≥ 0, E Nt
H,Ka 2

∑
i 1

m

ai
2t2Hi Ki .

(iii) Increments. For any 0 ≤ s ≤ t,

E Nt
H,Ka − Ns

H,Ka 2

∑
i 1

m

ai
2 t2Hi Ki  s2Hi Ki − 21−Ki t2Hi  s2Hi

Ki − |t − s|2HiKi .

(iv) Hölder continuity. Let Hi0Ki0  min HiKi ; i  1, . . . ,m . For all T  0, the MBBM
NH,K admits a version whose sample paths are Hölder continuous of order   Hi0Ki0 on the
interval 0,T.
(v) The increments process of the MBBM NH,K are not stationary except the case where
K  1, . . . , 1.
(vi) A mixed self similarity property. For any h  0, the MBBM NH,K satisfy:

Nht
H,Ka, t ≥ 0 d Nt

H,K a1hH1K1 , . . . ,amhHmKm , t ≥ 0 .

Proof. The proofs of i, ii are simple consequences of the definition of the MBBM. iii can
easily be deduced from ii. The point iv is a consequence of (2) and (4). In fact, we have

∑
i 1

m ai
2

2Ki
|t − s|2HiKi ≤ E Nt

H,K − Ns
H,K 2 ≤ ∑

i 1

m ai
2

2Ki −1
|t − s|2HiKi .

For v, it suffices to see that if Ki ≠ 1 holds, then E N2t
H,K − Nt

H,K 2 ≠ E Nt
H,K 2 for any

t ≥ 0, with

E N2t
H,K − Nt

H,K 2
∑

i 1

m

ai
2t2HiKi 4HiKi  1 − 21− Ki 4Hi  1Ki − 1 .

Now we deal with vi. Since the MBBM NH,K is a centered Gaussian process, then we have
only to prove that the two processes : Nht

H,Ka, t ≥ 0 and
Nt

H,K a1hH1K1 , . . . ,amhHmKm , t ≥ 0 have the same covariance function.
By virtue of (6), we have
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Cov Nt
H,K a1hH1K1 , . . . ,amhHmKm ,Ns

H,K a1hH1K1 , . . . ,amhHmKm

∑
i 1

m
aihHiKi 2

2Ki
t2Hi  s2Hi

Ki − |t − s|2HiKi

∑
i 1

m ai
2

2Ki
ht2Hi  hs2Hi Ki − |ht − hs|2HiKi

∑
i 1

m

ai
2E Nht

Hi, KiaNhs
Hi, Kia

 Cov Nht
H, KaNhs

H, Ka ,

which is our desired result. 

3. Quadratic Variation

In this section, we study the quadratic variation of the MBBM by using that of the BFBM
and the second moment of increments of the BFBM. The following lemma is a consequence of
remark 1.2.

Lemma 3.1.
1. If for all i  1, . . . ,m, we have: 1

2  HiKi  1, then  NH,K t  0.
2. If it exists i  1, . . . ,m such that: 0  HiKi  1

2 , then  NH,K t  .

3. If for all i  1, . . . ,m, we have: HiKi  1
2 . Then  NH,K t  ∑

i1

m
ai

221−Ki t.

Proof. 1. Invoke

Vt
,2NH,Ka ∑

i 1

n −1

Nti 1

H,K − Nti
H,K 2

∑
i 1

n −1

∑
j 1

m

aj Bti 1

HjKj − Bti

HjKj

2

∑
i 1

n −1

∑
l, l ′1

m

alal ′ Bti 1

HlKl − Bti
HlKl Bti 1

H
l
′K

l
′
− Bti

H
l
′K

l
′

∑
i 1

n −1

al
2Vt
,2BHl,Kl ∑

l ≠ l ′

m

alal ′Ul, l
′,

where

Ul, l ′ :∑
i 1

n −1

Bti 1

Hl Kl − Bti
Hl Kl Bti 1

H
l
′K

l
′
− Bti

H
l
′K

l
′

.
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Clearly EUl, l ′  0. Then to reach the required conclusion it suffices to show that:

n →
lim E|Ul, l ′| 0.

Using the Hölder inequality and (2), we get

E|Ul, l ′| ≤ ∑
i 1

n −1

E Bti 1

Hl Kl − Bti
Hl Kl Bti 1

H
l
′K

l
′
− Bti

H
l
′K

l
′

≤ ∑
i 1

n −1

E Bti 1

Hl Kl − Bti
Hl Kl

2 1
2 E Bti 1

H
l
′K

l
′
− Bti

H
l
′K

l
′ 2 1

2

≤ ∑
i 1

n −1

21 − Kl Kl
′

2 |ti 1 − ti|
Hl Kl  H

l
′K

l
′

≤ 21 − Kl Kl
′

2 ||Hl Kl  H
l
′K

l
′−1 t  0 as n → ,

where

∑
i1

n−1
|ti1 − ti|  t and HlKl  Hl ′Kl ′ − 1  0.

2. Is evident.
3. In this case, we need to prove that: limn→E|Ul, l ′|2  0.So, we consider the following
function, which appeared in Es-Sebaiy and Tudor [7],

n
l i, j : E Bti 1

Hl Kl − Bti
Hl Kl Btj 1

Hl Kl − Btj
Hl Kl .

We then have,

E|Ul, l ′|2 ∑
i,j1

n −1

n
l i, jn

l ′ i, j

∑
i 1

n −1

n
l i, i2 n

l ′ i, i
2
 2∑

ij

n −1

n
l i, jn

l ′ i, j.

Finally by using the properties of the functions n
l i, i and n

l i, j for i  j, obtained in [7]
to prove Lemma 2, we arrive at the desired result. 

4. The Markov Property

Here, we deal with the Markov property of the MBBM by using the famous result of Revuz
and Yor [19] concerning the case of Gaussian processes.

Theorem 4.1. For every a  a1, . . ,am ∈ Rm\0, . . . , 0, H  H1, . . ,Hm ∈ 0,1m and
K  K1, . . . ,Km ∈ 0,1m such that ∃ i ∈ 1, . . . ,m such that HiKi ≠ 1

2 , the MBBM
Nt

H,Ka, t ≥ 0 is not a Markovian process.
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Proof. By lemma 2.1, NH,K is a centered Gaussian process and for all t  0,

CovNt
H,Ka,Nt

H,Ka  ENt
H,Ka2 ∑

i1

m

ai
2t2HiKi  0.

When NH,K is a Markovian process, according to Revuz and Yor [19], for all s  t  u, we
should have,

CovNs
H,K,Nu

H,KCovNt
H,K,Nt

H,K  CovNs
H,K,Nt

H,KCovNt
H,K,Nu

H,K. 7
Let us consider the two numbers:

Hi0Ki0  minHiKi ; i ∈ 1, . . ,m, Hi1Ki1  maxHiKi ; i ∈ 1, . . ,m,

for two distinct cases.
First case: If HiKi  1

2 , with Hi1Ki1  1
2 . By virtue of (6) and (7) with

1  s  t  t  u  t2,
we would have,

∑
i 1

m

ai
2t2HiKi ∑

i 1

m ai
2

2Ki
t4Hi  tHi Ki − t4HiKi1 − t−3/2 2HiKi

∑
i 1

m ai
2

2Ki
tHi  t2Hi Ki − t2HiKi1 − t−1/2 2HiKi

∑
i 1

m ai
2

2Ki
t2Hi  t4Hi Ki − t4HiKi1 − t−1 2HiKi .

Therefore, when t → , we can write

∑
i1

m

ai
2t2HiKi ∑

i1

m
ai

2

2Ki
Kit4HiKi−3Hi  1

2 KiKi − 1t4HiKi−6Hi  ot4HiKi−6Hi

− 2HiKit4HiKi−3/2  HiKi2HiKi − 1t4HiKi−3  ot4HiKi−3

−∑
i1

m
ai

2

2Ki
Kit2HiKi−Hi  1

2 KiKi − 1t2HiKi−2Hi  ot2HiKi−2Hi

− 2HiKit2HiKi−1/2  HiKi2HiKi − 1t2HiKi−1  ot2HiKi−1

−∑
i1

m
ai

2

2Ki
Kit4HiKi−2Hi  1

2 KiKi − 1t4HiKi−4Hi  ot4HiKi−4Hi

The left member of the last equation would tend to zero as t goes to infinity. Consequently
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lim
t→

ai1
4

2Ki1
Hi1Ki12Hi1Ki1 − 11 − 2−Ki1 Hi1Ki12Hi1Ki1 − 1t6Hi1Ki1−3  0,

which is true if, and only if Hi1Ki1  1
2 . So NH,K is not a Markovian process.

Second case: If HiKi  1
2 , with Hi0Ki0  1

2 . In the same way, as explained in the first case,
with
0  s  t2  t  u  t  1 t → 0,

we get

lim
t→0

ai0
4

2Ki0
Hi0Ki02Hi0Ki0 − 11 − 2−Ki0 Hi0Ki02Hi0Ki0 − 1t3Hi0Ki03  0,

which is true if, and only if Hi0Ki0  1
2 . So in this case too, NH,K is not a Markovian process.

Remark 4.1. The little Landau "o" means that: "as t → t0, ft  ogt" means ft/gt → 0
as t → t0.

5. The Non-differentiability of the MBBM

This section reports on the following result concerning non-differentiability of the MBBM.
Here we use the classical arguments used by Houdré and Villa in [8].

Proposition 5.1. For every H  H1, . . . ,Hm ∈0,1m and K  K1, . . . ,Km ∈0,1m there
holds

→ 0
lim

t∈t0−, t0
sup

Nt
H,K

−Nt0
H,K

t−t0
 ,

with probability one for every t0 ∈ R.

Proof. For l,n ∈ N, let

An
l  w ∈  :

t∈t0 − 1
n , t0  1

n 

sup
Nt

H, K
−Nt0

H, K

t−t0
 l ,

Clearly An
l ⊇ An1

l when Al  
n1


An
l, also Al ⊇ Al1. So to prove the result, it is enough

to show that,

P
l1


Al 

l → 
lim PAl 

l → 
lim

n → 
lim PAn

l  1.

But,

PAn
l ≥ PNt0  1

n

H, K − Nt0
H, K  l

n ,

and we will show that,

limn→PNt0  1
n

H, K − Nt0
H, K ≤ l

n  0.



Mixed Bifractional Brownian Motion : Definition and Preliminary Results 73

Nt0  1
n

H,K − Nt0
H,Kis a centered Gaussian random variable with variance n

2t0 such that,

n
2t0  ENt0  1

n

H, K − Nt0
H, K 2 ∑

i 1

m

ai
2EBt0  1

n

Hi, Ki − Bt0
Hi, Ki 2.

Clearly,

PNt0  1
n

H, K − Nt0
H, K ≤ l

n

 1
nt0 2 − l

n

l
n exp − x2

2n2 t0
dx ≤ l

n
2
  1

nt0
,

and by (3) with   l
n , we have: limn→n2n

2t0  ,with
limn→PNt0  1

n

H, K − Nt0
H, K ≤ l

n  0,
and the required result follows. 

6. The -differentiability of the MBBM

The following notion of -derivative of a function have been introduced by Kowankar and
Gangal, [11], and studied by Ben Adda and Cresson in [3]. A geometrical meaning of this
derivative is that it gives the local Hölderian behavior of the function.

Definition 6.1. Let f be a continuous function on a,b, and let  ∈ 0,1.
1. Call a right, (respectively left), local fractional -derivative of f at t0 ∈ a,b the following
quantity:

dft0  Γ1   lim
t → t0



ft−ft0
|t − t0|

,

for    (respectively   −), where Γ is the Euler function.
2. The function f is -derivative at t0 ∈ a,b if and only if dft0 and d−ft0 exist and are
equal. In this case, we denote by dft0 the -derivative at t0.

Theorem 6.1. Let Hi0Ki0  minHiKi ; i  1, . . . ,m.
1. For all  ∈ 0,Hi0Ki0, the sample paths of the MBBM NH,K are almost surely
-differentiable at every t0 ≥ 0, and

∀t0 ≥ 0, PdNt0
H, K  0  1.

2. For all  ∈ Hi0Ki0 , 1, the sample paths of the MBBM NH,K are nowhere -differentiable,
almost surely.

Proof. 1. Clearly the probability is the same if we use the decomposition in the law (5). Here
we only give the proof for the case    and the proof for   − is similar. For 0 ≤ t0  t,we
have

PdNt0
H,K  0  P lim

t→t0


Nt
H,K − Nt0

H,K

t − t0
 0
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 P lim
t→t0

 ∑
i1

m

ai
Bt

Hi,Ki − Bt0
Hi,Ki

t − t0
 0

 P lim
t→t0

 ∑
i1

m

ai
C2Bt

HiKi − Bt0
HiKi − C1Xt

Hi,Ki − Xt0
Hi,Ki

t − t0
 0

 P lim
t→t0

 ∑
i1

m

ai
C2Bt−t0

HiKi

t − t0
− C1t − t01− Xt

Hi,Ki − Xt0
Hi,Ki

t − t0
 0

 P lim
t→t0

 ∑
i1

m

aiC2t − t0HiKi−B1
HiKi − C1t − t01−Xt0

Hi,Ki ′  0

 P0  0  1,

where we have used in the last expression the self similarity and the stationarity of increments
of the FBMs BHi Ki , and the fact that the trajectories of XHi, Ki are infinitely differentiable on
0,.
2. For any d  0, we may define the events

At 
0≤ s ≤ t
sup Ns

H, K
a

s  d.

Then for any decreasing sequence tn → 0, we have Atn1 ⊂ Atn. Thus
P limn→Atn  limn→PAtn,

and by using the mixed self similarity of NH, K,

PAtn ≥ P Ntn
H, Ka
tn
  d  P∑

i1

m

aitn
Hi Ki − B1

Hi, Ki  d.

Since   Hi0Ki0 , then

PAtn ≥ Pai0B1
Hi0 , Ki0 ∑

i≠i0

m

aitn
HiKi − Hi0Ki0 B1

Hi, Ki  dtn
 − Hi0 Ki0 ,

and

limn→ PAtn ≥ Pai0B1
Hi0 , Ki0 ≥ 0  1.

Here the proof ends. 

Remark 6.1. Clearly a similar way as above gives information about the -differentiability of
the BFBM BH, K.

7. On the Increments Process of the MBBM
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The first result in this section concerns the limiting process of the increments process of the
MBBM. The limit is a process with stationary increments. Here we combine Theorem 2.1 of
[13] with the independence of the n BFBMs in the definition of the MBBM.

Theorem 7.1. The increments process of the MBBM NH, K is not stationary except for the case
of K  1, . . . , 1. It is approximately stationary, however, for large increments in the sense
that, when h → , the increments process

Nth
H, K − Nh

H, K, t ≥ 0 ,

converges to the process

Mt
H, K :∑

i 1

m

ai2
1−Ki

2 Bt
Hi Ki .

Remark 7.1. For some stochastic properties and characteristics of the process Mt
H,K, we refer

the reader to Thäle, [22].

The result of theorem 7.1 will be explained from the perspective of the noise generated by
the MBBM NH,K, defined by

Zn  Nn1
H, K − Nn

H, K.
Recall then that in the case: K  1, . . . , 1, we have for every h ∈ N and for every n ≥ 0,
EZhZhn  EZ0Zn. But when K ≠ 1, . . . , 1,we may denote

R0,n : EZ0Zn  EN1
H, KNn1

H, K − Nn
H, K,

and

Rh,h  n : EZhZhn  ENh1
H, K − Nh

H, KNhn1
H, K − Nhn

H, K.
Furthermore, let us compute the term Rh,h  n and estimate how different it is from

R0,n in the case of the MBBM. For every n ≥ 1, we have

Rh,h  n ∑
i 1

m ai
2

2Ki
fi

hn  gin,

where

fi
hn  h  12Hi  h  n  12Hi Ki − h  12Hi  h  n2Hi Ki

− h2Hi  h  n  12Hi Ki  h2Hi  h  n2Hi Ki ,

and
gin  n  12HiKi  n − 12HiKi − 2n2HiKi , i  1, . . . ,m.

Remark 7.2. For i  1, . . . ,m, the function gi is, modulo a constant, the covariance function of
the fractional Brownian noise with the Hurst index HiKi. Indeed, for n ≥ 1,
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gin  2EB1
Hi KiBn1

Hi Ki − Bn
Hi Ki .

The second result shows, by means of Theorem 3.3 of [13], how far the mixed bifractional
Brownian noise is from the stationary case.

Theorem 7.2. For each i  1, . . . ,m and n it holds that as h → ,

fi
hn  2Hi

2KiKi − 1h2Hi Ki−11  o1.

Therefore lim
h→

fi
hn  0, for each n.

Remark 7.3. The mixed bifractional Brownian noise is not stationary. However, the meaning
of the theorem above is that it converges to a stationary sequence.

We may now use Theorem 4.1 and Remark 4.2 in [13], and Proposition 7 and Remark 7 in
[18], to arrive at the following result that concerns the long range dependence of the MBBM.

Lemma 7.1. For every integer h ≥ 1 and n ≥ 0, we have
1. Long memory: If it exists i  1, . . . ,m such that HiKi  1

2 , then
∑
n ≥ 0

Rh,h  n  .

2. Short memory: If for all i  1, . . . ,m we have HiKi  1
2 , then

∑
n ≥ 0

Rh,h  n  .

Remark 7.4. The LRD and long memory are synonymous notions. LRD measures long-term
correlated processes. LRD exists when past events influence the present and possibly future
events. LRD is a characteristic of phenomena whose autocorrelation functions decay rather
slowly. The presence and the extent of LRD is usually measured by the parameters of the
process. The "specialness" of LRD indicates that most stationary stochastic processes do not
have it. This also makes it intuitive that non-stationary processes can provide an alternative
explanation to the empirical phenomena that the notion of LRD is designed to address. This
connection between long memory and lack of stationarity is very important, (see for example
Maejima and Tudor [13] in case of the BFBM, and C-René Dominique and Luis Eduardo Solis
Rivera-Solis [17] in case of the mixed FBM).

In the end of this section, we consider the asymptotic behavior of correlation for large
increments of the MBBM. In fact, by using theorem 7.1, we have

lim
h→

Ct,s,h : CovNth
H,K − Nt

H,K,Nsh
H,K − Ns

H,K  CovMt
H,K,Ms

H,K.

Next, we may state the following result.

Lemma 7.2. The large increments of the MBBM NH,K are asymptotically:
1. Persistent (positively correlated): if for all i  1, . . . ,m: HiKi  1

2 .
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2. Uncorrelated: if for all i  1, . . . ,m: HiKi  1
2 .

3. Anti-persistent (negatively correlated): if for all i  1, . . . ,m: HiKi  1
2 .

This lemma can be recast as follows.

Corollary 7.1. If b and c are two numbers such that |b|≤ |c|, then for h large enough, we have

Ct,s,ha1, . . . ,b, . . .am  Ct,s,ha1, . . . ,c, . . .am HiKi  1
2 , i  1, . . . ,m.

Ct,s,ha1, . . . ,b, . . .am  Ct,s,ha1, . . . ,c, . . .am HiKi  1
2 , i  1, . . . ,m.

Consequently, if HiKi  1
2 (respectively HiKi  1

2 ), i  1, . . . ,m, then
∙ The smaller (larger) b is, the more correlated the increments of Nt

H, Ka1, . . . ,b, . . .am are.
∙ The larger (smaller) b is, the less correlated the increments of Nt

H, Ka1, . . . ,b, . . .am are.

Remark 7.5. The result of corollary 7.1 will be useful in modeling of a particular
phenomenon. Indeed, we can choose H,K and a suitably, in such a manner that the MBBM
NH, Ka permits taking the sign and the level of correlation between the large increments of
this phenomenon into account.

8. Conclusion and Outlook

We should point out that in this paper, we have only presented the MBBM and studied
some of its stochastic properties and characteristics. This is enough for the purpose of this
paper. We believe that our reported process can be a possible candidate for models which
involve self similarity, long range dependence and non stationarity of increments. It can be
used to generalize the work of C-René Dominique and Luis Eduardo Solis Rivera-Solis [17] in
case of the mixed FBM where the market alternated between anti-persistence and persistence.
In future outlook, firstly, we will try to study some SDEs driven by the MBBM, (for the case of
SDEs driven by a sum of independent FBMs, we refer to Mishura [15] and Zähle [24]). We
will develop a stochastic calculus for the MBBM from the work of Es-Sebaiy and Tudor [7] in
case of the BFBM. Secondly, since it is highly important to identify the values of the
parameters H and K in order to understand the structure of the process and its applications. We
will try to estimate the parameters H and K of the MBBM NH, Ka by using the new theory of
estimating the Hurst parameter using the conic multivariate adaptive regression splines method
developed in Yerlikaya et al. [23], in case of the FBM.
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