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Abstract. We consider a class of algebraic discrete time Riccati equations arising in the study
of positive linear systems. A sequence of Stein algebraic Riccati equations is constructed with
nonnegative coefficients, whose solutions are nonnegative and converge to the solution of an
algebraic discrete time Riccati equation of the optimal control problem in the infinite horizon
for positive systems. The obtained solution is nonnegative maximal leading to the nonnegative
state trajectories of the system. A sufficient condition is established for the positivity of the
linear quadratic (LQ)-optimal closed-loop system. A numerical example is presented to
illustrate the theoretical results.
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1. Introduction

Consider the following discrete time (time invariant) linear system
xi1  Axi  Bui , i  0,1,2,… 1

where the state xi and the control ui are real vectors, A and B are n  n and n  m real matrices,
respectively, and x0 is given.
The recurrence relation for the state xi is known [8]to be

xi  Ai x0 ∑
r0

i−1

Ai−r−1 Bur, i  1,2,3,…

The cost functional associated with the above discrete time system is
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Jx0 ∑
i0



xi
T Qxi  ui

T Rui , 2

where R is an m  m real symmetric positive definite matrix, and Q  QT is an n  n real
positive semidefinite matrix.

In case where i  0,…N − 1 in (2) and (1), the above model is called a linear quadratic
finite discrete time control model. And we shall investigate the infinite horizon case.

The optimal cost in x0 is given by
J̃x0  infu Jx0 .

Very interesting and actual problems are considered in the framework of the linear system
(1) where the state and output variables should remain nonnegative for any nonnegative initial
conditions and input functions. Such type systems are coined as positive systems according to
the following definition.

Definition 1.1. The system (1) is said to be positive if for all initial nonnegative x0 and for
nonnegative controls ui for all values of i, then the state trajectories xi are nonnegative for all
values of i.

There are many examples and applications for the positive systems. Most notable forms of
these positive systems arise in economics [1, 6] and/or financial modelling [7]. The above
definition can be specified for the finite horizon case i  0,… ,N − 1 and for the infinite
horizon case i  0,… , and remains valid for these two cases. Moreover, the following
property of positive systems is well known (see e.g. [4, 5], Proposition 5.1, [2]).

Proposition 1.1. The system (1) is positive if and only if A and B are nonnegative matrices.

The finite horizon linear quadratic control problems for positive linear systems in discrete
time is studied in [2, 3]. Necessary and sufficient conditions for their solvability can be derived
by using the maximum principle. Much of the theory and applications of positive systems can
be found in [4, 5].

This paper is a study the linear quadratic infinite discrete time control problem. The infinite
horizon positive LQ problem in discrete time consists of minimizing the quadratic functional
(2) for a given positive linear system described by (1), where the initial state x0 is nonnegative.
We assume that the matrix coefficients A,B,Q are nonnegative matrices and R is a
nonnegative. In addition R is a positive definite and Q is a positive semidefinite matrix. It is
well known that the equilibrium point for this problem can be obtained, [8], as a maximal
solution to the discrete time algebraic Riccati equation

P  MP : AT PA  Q
−AT PB R  BT PB−1 BT PA ,

3

where
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P ∈ DomM  P is nonnegative , detR  BT PB ̸ 0 , .
Moreover, based on the standard problem [8], the optimal control is given by
ui  −R  BT P̃B−1 BT P̃Axi

and
xi1  A − BR  BT P̃B−1 BT P̃A xi , i  0,1,2,… ,

where P̃ is the maximal symmetric solution to P  MP and P ∈ DomM. We shall define
the controller as a matrix KP  R  BT PB−1 BT PA. Thus xi1  A − BKP̃xi.

In this paper we will investigate a special class of positive systems, where the state
trajectories xi are nonnegative for all values of i, i.e. we will interest for the case when
A − BKP̃ is a nonnegative matrix! For this purpose we consider a recurrence equation for
computing the maximal symmetric nonnegative solution P̃ to discrete-time algebraic Riccati
equation (3). A user friendly sufficient condition is proposed for convergence of the pertaining
recurrence equation. A numerical example is presented where the theoretical results are
illustrated.

As a matter of notation, the inequality A ≥ 0 A  0 means that all elements of the matrix
(or vector) A are real nonnegative (positive). Here the matrix A is said to be nonnegative
(positive). For the matrices A  aij and B  bij, we write A ≥ BA  B if
aij ≥ bijaij  bij hold for all indexes i and j. The spectral matrix norm is represented by
‖.‖ AAT , where .  stands for a spectral radius of A.

2. Discrete Time Riccati Equation With a Nonnegative Solution

As it is possible to rewrite equation (3) in the form

P  MP : A − BKPT P A − BKP  Q  KP
T RKP

4

or
P  ÃP

T PÃP  Q̃P,
with ÃP  A − BKP and Q̃P  Q  KP

T RKP, we note that the Q̃P is a positive semidefine
matrix because R is positive definite and Q is positive semidefinite.

It is easy to derive the following properties ofMP for symmetricY,Z matrices :

MZY  ÃZ
T YÃZ  Q̃Z − WZY , 5

and

MZZ −MZY  ÃZ
T Z − YÃZ  WZY , 6

where
WZY  KZ − KYT R  BT YB KZ − KY .

A solution X̃ of (3) is called maximal if X̃ ≥ X for any solution X, and this will be
investigated the next section.
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3. An Iteration With Positivity Preserving Property

Let us introduce the iteration

Pi1  ÃPi
T Pi ÃPi  Q̃Pi

, i  0,1,2,… 7

where the initial point P0  P0
T is chosen such that KP0 ≥ 0, and ÃP0 ≥ 0 and the inequality

P0 −MP0 ≥ 0 holds. The convergence properties of matrix sequences defined by (7) are
derived under the following assumption.

Assumption 3.1. The inequality KP0 − KPi ≥ 0 where Pi is computed via (7) is satisfied for all
integers i.

Our method can be applied under the main assumption that there exists an initial point P0
with the special properties noted above. These properties happen to be essential for the proof
of the convergence of (7) in the theorem that follows. As for the choice of the matrix P0 in the
illustrative example, it is assumed that P0  eeT with eT  1,1,… , 1. The convergence
result is given by the theorem that follows.

Theorem 3.1. Letting that there is a positive semidefinite matrix P0 such that:
aP0 ∈ DomM, b KP0 ≥ 0, cP0 − MP0 ≥ 0 and dÃP0 ≥ 0. Then for the matrix
sequences Pii1

 , defined by (7), the following properties are satisfied.
i Pi ∈ DomM,
ii P0 ≥ Pi , i  1,2,… .
iii ÃPi ≥ 0, i  1,2,… .

Proof. We compute P1 via (7) as
P1  ÃP0

T P0 ÃP0  Q̃P0
.

Note that Q̃P0
and ÃP0 are nonnegative matrices and hence P1 ≥ 0. In addition P1 is a positive

semidefinite matrix because it is a sum of two positive semidefinite matrices. Consequently
R  BT P1B − R is a positive definite matrix and hence R  BTP1B is nonsingular. Therefore
P1 ∈ DomM.
Moreover, since P0 −MP0 ≥ 0 then
P0  MP0  N0,

where N0 ≥ 0. Using the recurrence equation (7) and matrix identity (5) we have
Pr1  MPr  MP0Pr  ÃP0

T Pr ÃP0  Q̃P0
− WP0Pr , r  0,1,… .

Thus

P0 − Pr1  ÃP0

T P0 − PrÃP0  N0  WP0Pr . 8

According to assumption 3.1 we have KP0 − KPr ≥ 0 and then
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WP0Pr  KP0 − KPrT R  BT Pr B KP0 − KPr.
Also it follows that WP0P1 ≥ 0. Thus P0 − P1  N0  WP0P1 ≥ 0. Moreover,
ÃP1 − ÃP0  BKP0 − KP1 ≥ 0, B ≥ 0 .

Since ÃP0 ≥ 0 , it follows that ÃP1 ≥ ÃP0 ≥ 0.
Now, assume there exists a natural number r and the matrix sequence P0,P1,… ,Pr is

computed with the properties Pj ∈ DomM , P0 ≥ Pj and ÃPj ≥ 0 for j  1,… , r. Next, we are
ready to compute the matrix Pr1 using (7) and we will prove properties (i), (ii) and (iii) for
i  r  1.

The matrices ÃPr  Q̃Pr
are nonnegative in (7), hence Pr1 ≥ 0 and R  BTPr1B is

nonsingular. We may then conclude that Pj ∈ DomM and the right-hand side of (8) is
nonnegative because P0 − Pr ≥ 0. Then P0 − Pr1 ≥ 0.

With regard to the nonnegativity of ÃPr1 , we have
ÃPr1 − ÃP0  BKP0 − KPr1 .

Moreover, assumption 3.1 and B ≥ 0 lead to ÃPi ≥ ÃP0 ≥ 0. Hence
ÃPr1 ≥ 0 .

Applying (7) for computing Pr2 , we establish that Pr2 is nonnegative. Therefore the
computed, via (7), matrix sequence Pii1

 is bounded. 

In next theorem we prove that the iteration (7) constructs a matrix Cauchy sequence that
converges to a solution of (3) with a linear rate of convergence.

Theorem 3.2. Assume that the conditions a, b, c and d of theorem 3.1 are satisfied for a
nonnegative matrix P0 ∈ DomM,
a  ‖A‖2, b  ‖B‖2, p0  ‖P0‖, r2  ‖R−1‖, r0  ‖R  BT P0 B‖,

and that
i ã  a1  bp0 r22  1,
ii  ã 1  2bp0 r0 r2

2 ≤ 1.
Then the matrix sequence Pii1

 defined by (7) converges to a nonnegative symmetric matrix
P̃ approximation to (3) with a rate of convergence   1−ã

b̃
and 0 ≤ P̃ ≤ P0, or

‖Psq − Ps‖≤ s ‖Pq − P0‖
s

1− ‖P1 − P0‖

for all nonnegative integers s and q.

Proof. Following the course of the proof of theorem 3.1, it has been shown that 0 ≤ Pi ≤ P0
for all i  1,2,… . Therefore, we have B ≥ 0 and
R ≤ R  BTPiB ≤ R  BTP0B

for i  1,2,… . Thus
‖R  BTPiB‖≤ ‖R  BTP0B‖ and ‖R−1‖≥ ‖R  BTPiB−1‖

for i  1,2,… .
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For integers s and q  s we obtain:
Psq − Ps  MPsq−1 −MPs−1

 ÃPs−1
T Psq−1 − Ps−1ÃPs−1 − WPs−1Psq−1 .

Using
ÃPs−1  A − BR  BTPs−1B−1BTPs−1A,

leads to the estimate
‖ÃPs−1‖≤ ‖A‖ 1  ‖B‖2 ‖Ps−1‖‖R  BTPs−1B−1‖

≤ ‖A‖ 1  ‖B‖2 ‖P0‖‖R−1‖  ‖A‖ 1  bp0 r2 .
If Y and Z are matrices from the sequence Pi, i  1,2,… , then in order to estimate ‖WZY‖
we consider the difference Kz − KY and following [8] we obtain
Kz − KY  R  BTZB−1BTZ − YA

 R  BTYB−1 BT Y − ZBR  BTZB−1 BTYA .
Thus
‖Kz − KY‖ ≤ ‖R  BTZB−1‖‖B‖‖Z − Y‖‖A‖

 ‖R  BTYB−1‖‖R  BTZB−1‖‖B‖3 ‖Z − Y‖‖A‖‖Y‖
≤ ‖R−1‖‖B‖‖Z − Y‖‖A‖‖R−1‖2 ‖B‖3 ‖Z − Y‖‖A‖‖P0‖

 ‖R−1‖‖B‖‖Z − Y‖‖A‖1  ‖R−1‖‖B‖2 ‖P0‖ .
Further on, we conclude that
‖WZY‖  ‖KZ − KYT R  BTYB KZ − KY‖

≤ ‖KZ − KY‖2 ‖R  BTP0B‖
≤ r0 ‖R−1‖2 ‖B‖2 ‖Z − Y‖2 ‖A‖21  ‖R−1‖‖B‖2 ‖P0‖

2

 r0 r2
2 bã‖Z − Y‖2 .

Now we are ready to estimate Psq − Ps. Indeed
‖Psq − Ps‖≤ ‖ÃPs−1‖2 ‖Psq−1 − Ps−1‖‖WPs−1Psq−1‖

≤ ‖ÃPs−1‖2 ‖Psq−1 − Ps−1‖r0 r2
2 bã‖Psq−1 − Ps−1‖2

≤ ‖A‖2 1  bp0 r22 ‖Psq−1 − Ps−1‖r0 r2
2 bã‖Psq−1 − Ps−1‖2

 ã‖Psq−1 − Ps−1‖r0 r2
2 bã‖Psq−1 − Ps−1‖2

≤ ã‖Psq−1 − Ps−1‖r0 r2
2 bã2‖P0‖‖Psq−1 − Ps−1‖

 ã  2 r0 r2
2 bãp0‖Psq−1 − Ps−1‖

≤ ‖Psq−1 − Ps−1‖ ≤ …≤ s ‖Pq − P0‖
s

1− ‖P1 − P0‖ .
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Thus the sequence Pii1
 is a Cauchy sequence, defined in 0,P0. Hence this sequence has a

nonnegative limit P̃ and it is easy to check that P̃ is a solution to (3). The proof of the theorem
is therefore complete. 

4. A Numerical Example

Here we investigate the numerical behavior of the considered iteration (7) for finding the
maximal solution to the discrete time nonnegative Riccati equation P  MP, P ∈ DomM.
Based on this solution the optimal control for linear quadratic infinite discrete time control
problem is obtained. An experiment will be carried out where we show how the iteration (7)
works and we will apply theorem 3.2 to compute the convergence rate  defined in this
theorem.

Real nonnegative matrices are used as coefficients of Riccati equation (3). All reported
results are obtained by using the MATLAB platform. In order to apply the introduced
iteration we have to choose the initial matrix P0 such that the conditions of theorem 3.1 are
satisfied. Our experience with similar iterative approaches motivates taking a matrix P0 of the
form P0  eeT. The error of each iteration step is denoted by Errori  ‖MPi − Pi‖. The
computations stop as soon as the inequality ErrorIt ≤ tol  1.e − 12 holds true. This inequality
is in fact used as a practical stopping criterion.

Example 4.1. The coefficient matrices A,B,R and C are:

A 

0.08 0.05 0.045
0.4 0.08 0.035
0.05 0.5 0.75

, B 

0.04 0.025
0.02 0.01
0.04 0.03

,

R 
1.05 0

0 1.0
,C 

1 0 1
0 1 0
1 0 0

, Q  C′ ∗ C .

Note that the matrices A and B are nonnegative, then apply iteration (7) for computing the
maximal nonnegative solution to (3). Take further P0  2.85eeT to obtain

KP0  R  BTP0B−1BTP0A 
0.1384 0.1646 0.2168
0.0945 0.1123 0.1480

≥ 0 .

In addition P0 − MP0 ≥ 0 and ÃP0 ≥ 0. The conditions of theorem 3.1 are fulfilled. We
begin the computations with iteration (7). Error propagation is presented in Table 1. After 55
iteration steps, the computed nonnegative solution is
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P̃ 

2.3956 0.4373 1.5737
0.4373 1.8278 1.1522
1.5737 1.1522 2.6115

,

and the optimal nonnegative control is

ÃP̃  A − BR  BTP̃B−1BTP̃A 

0.0767 0.0440 0.0367
0.3984 0.0772 0.0311
0.0465 0.4936 0.7412

.

According to theorem 3.2 for the rate of convergence we obtain   0.9951.

Table 1. Error propagation for Example 1.

Iteration Error

1 1.0876e0
5 0.0487e0
10 0.0034e0
20 1.6615e-5
30 8.1355e-8
40 3.9835e-10
52 6.7314e-13

5. Conclusion

We have illustrated that the maximal nonnegative solution of (3) can be found by using the
proposed standard Newton iteration (7). A sufficient condition for obtaining a nonnegative
symmetric solution has been derived. This leads to the nonnegative optimal control to the LQ
optimal control problem for positive systems. The linear rate of convergence to (7) has been
proved.

The pivot point of theorem 3.1 has been assumption 3.1. Note that in this work if there
exists an integer s for which the inequality KP0 − KPs ≥ 0 is impaired, then the iteration stops.
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The matrix Ps−1 can be considered as an approximation to the maximal solution P̃. A prove of
the statement in assumption 3.1 is however left as a subject for a future work.
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