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Abstract. We study the maximum likelihood estimator for stochastic differential equations
with additive sub-fractional Brownian motion. The study applies Girsanov transform to the
sub-fractional Brownian motion and employs the theory of regularity and supremum
estimation for Gaussian process.
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1. Introduction

Recent developments in stochastic calculus to engulf fractional Brownian motion have led
to many applications to the statistical inference. As a result many authors are currently
interested in the study of parameter estimation problems for diffusion type processes satisfying
stochastic differential equations driven by the fractional Brownian motion.

Among these we may cite the work of Prakasa Rao [13, 12], considered pioneering for this
method of estimation. Other authors have studied these aspects too, see e.g. Comte [2] Norros
et al. [11], Le Breton [8], Decreusefond and Ustiinel [3], Kleptsyna et al. ([7],[6]), Tudor et
al.[16]. The case of parameter estimation for stochastic equations with an additive fractional
Brownian sheet was studied by Tudor et al.[14]. An obvious extension of this work is to study
the sub-fraction Brownian motion case. Elements of stochastic calculus covering sub-fractional
Brownian motion have recently been considered by Tudor [15], and stochastic differential
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equations driven by sub-fractional Brownian motion has also been considered by Mendy [9].
The aim of this work is to construct the maximum likelhood estimator (MLE) for the
parameter 6 in the equation

t
Xt:QJOb(Xs)ds+SF, 0<t<T, (1)

where 6 is unknown constant drift, S" is a sub-fractional Brownian motion with Hurst
parameter H € (0,1) and b is a function which satisfies a linear growth condition. Our
construction of the estimator is based on the Girsanov transform and uses the relation between
the sub-fractional Brownian motion and standard Brownian motion and the theory of regularity
and supremum estimation for Gaussian process. In this respect, recently Mendy [10] has
studied parameter estimation problems for sub-fractional Ornstein-Ulhenbeck process by using
the Girsanov transform, the relation between sub-fractional Brownian motion, Malliavin
calculus and Gaussian regularity theory.

This paper is organized as follows. Section 2 contains some preliminaries on the
sub-fractional Brownian motion. In section 3, we give estimate of the solution of (1). Section 4
contains the proof of the existence of the MLE for the parameter 6. Finally, in section 5, we
present two different expressions of the MLE.

2. Sub-fractional Brownian Motion

Let SH = {SH',t € [0, T]} be a sub-fractional Brownian motion with Hurst parameter
H € (0,1), in a standard probability space (Q, F,P). SH is a centered Gaussian process with
covariance function Cy given by :

E[SHSH] = st +tH — 2 [(s+ ) + s — t]1].
This process was introduced by Bojdecky et al. [1] as an intermediate process between
standard Brownian and fractional Brownian motions.
In fact sub-fractional Brownian motion S has in the past been represented by a standard
Brownian motion W that is constructed from it. For details and references on this construction

see Tudor [15] and Dzhaparidze et al. [4]. Consider now the kernels ny and v introduced in
[4] and in [15] viz

nu(t,s) = m s7HL (I (x% - 2)H_%dx>1(o,t)(3)

JT 3 [ oe-syt 3 t s
- 2HF(H+%)SZ ( ; +.[S - dX )10y (s)

and

H5 M H
vH(ts) = g [ @ -s) T -

H-3) L(xz -k | 100(9) )

The following lemma due to Mendy [9] gives an estimate of v which we use throughout this
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paper.

Lemma2. 1. (i) ForeveryH < % and T > 0,

lyu(t,s)< C(H)S?M2, 0<s<t<T,
(ii) ForeveryH > - and T > 0,

lyn(t, )< C(H)SH32(t—s)2H + C'(H)sH32, 0<s<t<T,
where C(H) and C'(H) are two generic positive constants depending only on H.

According to Dzhaparidze et al. [4] and Tudor [15], we have the relations between the

sub-fractional Brownian motion and the Brownian motion constructed by it, established by the
following result.

Theorem 2. 1. The process

W= [ wuct st 3
is the unique Brownian motion such that

st = c(H) [ ; Nt $)dWs, 4)
where

C2(H) = C(L+2H)sinaH

3

Moreover SH and W generate the same filtration.

In what follows we shall denote by ny also the operator on L2([0,T]) induced by the
kernel

(O = [ Mt S)E)ds,
and similarly for w. Note that the operator v is indeed the inverse of the operator ny.

3. On the Solution

Consider equation (1) driven by the sub-fractional Brownian motion SH with Hurst
parameter H € (0,1). Suppose that Xo = 0 and 6 > 0. Equation (1) has, by the way, been
considered by Mendy [9] for Hurst parameter H € (0,1) in the more general context
b(x) = b(s,x) with s € [0, T]. It has been proved in [9] that, if b satisfies a linear growth
condition

sup sup|b(s,x)|< M(1 + [x]), (5)

se[0,T] xeR

then Equation (1) has a unique weak solution; which will be assumed throughout this paper.
Since our main objective is the construction of a maximum likelihood estimator from the
observation of the trajectory of the process X that satisfies (1), we will need some estimates on
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the supremum of this processes.

Lemma 3. 1. Foreverys,t e [0,T],

sup|X;s|< (Ct + suplS?l)eKt. (6)
s<t s<t

Proof. Consideration of (5) and Gronwall’s lemma in
Xs| < 0 Io(Xu)ldu + [SE],

leads to
X< 0f 0 C(L + |Xq|)du +sup |SH|

U<s

< (Ct +sup |S';'|>e05, s e [0,T]. |

Uus<s

4. Maximum Likelihood Estimator

Our construction is based on the following observation (see Mendy [9]). Given an adapted
process with integrable trajectories u = {u:,t € [0, T]}, consider the transform
~ t
St = st'+ [ usds, ©)
0

to write
3 = St + [! usds = c(H) [ nu(t, S)dWs + [ usds

= c(H) [ nu(t, s)dWs, ®)
where
Wi = Wi + j; (IZ (y/H(s, r f(r) uzdz>dr>ds
=W, + j; vsds, 9)
with
Vs = J;(WH(Sr r I; uzdz)dr. (10)

As a consequence we may deduce the following version of Girsanov’s theorem for the
sub-fractional Brownian motion.

Theorem 4. 1. Let SH be a sub-fractional Brownian motion and let u = {us;s € [0, T]} be a
process adapted to the filtration generated by SH. Then let W be a standard Brownian motion
constructed from S™ by (3) and vs be defined by (10).
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Assume further that

(i) vs € L2(QQx[0,T)),

(i) B(Vr) =1,

where

Vi = exp(—j;vsdwr -1 ;vgdr).

Then under the new probability P, with g—ﬁ = V1, the process W given by (9) is a standard

Brownian motion and the process S" given by (8) is a sub-fractional Brownian motion.

The rest of this section is devoted to construction of a maximum likelihood estimator for
the parameter 6 in (1) by using the Girsanov theorem (4.1).

Proposition 4. 1. Let
Q: = [ wn(t, (] b(Xs)ds ),
then, given an observation over [0, t], the MLE for 8 in (1) is
t
dw
0 - —I%Q”—”- (11)
J, Qi du

Proof. let us denote by P, the law of the process X; that is unique for (1). Then the MLE is
obtained by taking sup Fy, where Fg = %.The conclusion (11) follows then by Girsanov

0
theorem (4.1) if we show that Vt is well-defined and E(Vt) = 1. The pertaining Q: would, in
view of (5) and Lemma 2.1, satisfy

1Ql < L jwn(t D[ [b(X,)| dudr

< [ wwenl [ c+ 1)) dudr (12)
0 0

< j;r lyh(t, r)|f;C(1 +sup |(xu)|> ds

U<s

< Cj; rywu(tr)|ds (1 +sup |(Xu)|>

Us<s

< C(H,T) (1 + Suli£)|(xu)|>. (13)

Notice that Q; is an adapted process and taking into account that X; has the same regularity
properties as the sub-fractional Brownian motion, we deduce that Q € L?([0, T]) almost surely
and V. is well defined.

To prove that E(V1) = 1, it suffices to invoke Theorem 1.1, page 152 in Frieman [5] and
to note, by (6) and (13), that there exists an a > 0, such that
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sup E(expla Q) < . -

O<ust

5. Alternative Form of the Estimator

In this section, we will give other forms for the maximum likelihood estimator.
By (1), and via integrating the quantity w(t,s) with respect s between 0 and t, we can write

t t
j VH(LS)dXs = 6 j YHES)b(Xs)ds + W, (14)
On the other hand, according to (1), we have
t N
X¢ = c(H) j Mu(t, )V, (15)
where W is given by
~ t S r
We = W+ | (j wh(sn) ( [ b(Xs)ds)dr)ds. (16)
0 0 0

Therefore, the following equality
~ t
W, = jo wh(t,s)dXs. (17)

holds, Then (14)-(17) we obtain
Jo (o wnts ([ boxayds )dr)ds = [[yut 9b(Xs)ds.

Thus the function t » j;y/H(t,s)Xsds is absolutely continuous with respect the Lebesgue
measure and

d t
Q=& j Yt Sb(Xs)ds. (18)

By (16), the MLE is obtain by taking the sup Fg, where
0

Fo = log(%e) = — Hj;Qsd\Tvs + %szgdis.

Po
As a consequence, the maximum likelihood estimator 6; has the equivalent form
[, QsW
[iQuds
The last formula shows explicitly that the estimator 6; is observable if it is possible to observe
the whole trajectory of the solution X.

Now we derive a form for the MLE by using the sub-fractional fundamental martingale
given by Tudor [15].

0 (19)
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Denote
dy =

2H—1/2
C(H)[(3/2-H) /7 '
in the process

t
MH = dy, j Osl’Z‘HdWs, (20)

where W is a standard Brownian motion, which is called the sub-fractional fundamental
martingale. Since

Wi = [ wh(t,s)dst,

we have
t
M = | kn(ts)dst, (21)
0
and on(t) =< M >t = Axt?2H, where ku(t,s) = dus¥?Hyu(t,s) and Ay = ZfE'H. The

integral in (21) can be defined in a Wiener sense with respect to the sub-fractional Brownian
motion. The filtration generated by M coincides with the one generated by S*.
Let us integrate the deterministic kernel ky(t,s) with respect to both sides of (1) and get

t t
Z, = j ki (t,s)dXs = 0 j Ki(t, 5)b(Xs)ds + M. (22)
0 0
We deduce that
Xy = j;KH(t,s)dzs
CH)

where Ky(t,s) = Tstl’an(t, s). The sample paths of the process {X;,t > 0} are smooth
enough so that the process R; represented by

Re = do

d t
"0 j kn(t9b(X)ds, t < [0,T) (23)

is well-defined where the derivative is understood in the sense of absolute continuity with
respect to the measure generated by wy. Moreover the sample paths of the process Q: belong
to L2([0,T]) a.s. Finally from (22) and (23) we obtain that

t
Z, = ej Rsdn(s) + Mr. (24)
0
and then the MLE for the parameter 0 in (1) can be written as

[* RedM,
0y = —2

=0 25
J}, Redaom(s) )
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Remark 5. 1. If 6y is the true parameter, it can be shown that
dp] T 1 21T o2
= exp[(60 — 0) [ RsdMs] = 3-(00 — 0)2 [ RZdw(s).

dP}o

Consequently,
. jt RsdMs
0T — 0 = - 2——.

[ Rédon®
0

To show that 07 is strongly consistent, that is lim 67 — 0, = 0, one can use theorems 3.1 and

T—+o0
3.2 of [13].
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