
Journal of Numerical Mathematics and Stochastics, 3 (1) : 31-36, 2011 © JNM@S
http://www.jnmas.org/jnmas3-4.pdf Euclidean Press, LLC

Online: ISSN 2151-2302

Numerical Evaluation of the Stochastic Integral
Using Mechanical Quadrature Rules

A. A. BADR
Alexandria University, Alexandria, Egypt, E-mail: badrzoo@yahoo.com

Abstract. Many authors have investigated numerical methods for solving stochastic
differential equations and their boundary value problems. The situation with numerical
stochastic integration, as a subject of its own, has so far been different. It has not been studied
with the same vigor as of investigating ordinary numerical integration. Consequently, a timely
question appears to arise here on whether usual numerical quadrature methods can be
employed to evaluate the stochastic integral. This paper is an attempt to answer this question
by presenting a modified mechanical quadrature rule for this purpose. Convergence of this
numerical integration method is also investigated and a pertaining result is reported.
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1. Introduction

Stochastic calculus, which is almost as old as the ordinary calculus, see, e.g., [5], naturally
appears when modeling real life physical systems, where purely deterministic partial
differential equations (PDEs) fail to predict the real trajectories of the associated dynamics. In
many such situations it turns out to be quite reasonable to modify the PDEs just by embedding
the possibility of random effects into the dynamics of these systems. Such modifications may
result with an explicit distinction between the stochastic and the deterministic approaches, see
[4], to modeling. Generally speaking, when separate deterministic and stochastic terms (or
parts) are incorporated in a model, there is a likelihood for a need to evaluate two types of
integrals: ordinary and stochastic. Interestingly, despite the ongoing increasing research in
numerical methods for stochastic differential equations (SDEs), still there is apparently less
reported work on numerical methods for stochastic integrals, see [1,7], in comparison with the
existing huge numerical literature on ordinary integrals. Consequently, a timely question
appears to arise here on whether usual numerical quadrature methods can be employed to
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evaluate a stochastic integral 
0

T G dW, in which G is an ordinary function and W is a random
variable. This paper is an attempt to answer this question by presenting a modified mechanical
quadrature rule for this Itô stochastic integral.

The rest of this paper consists of two sections. In section 2, we define the previous
stochastic integral and establish its notations with relevant preliminaries. In section 3, we
present the numerical quadrature method that approximates the stochastic integral.
Convergence of this numerical integration method is also investigated in this section and a
pertaining result is reported.

2. Definitions and Preliminaries

Let   1,2, . . . be the collection of all outcomes, i, i  1,2,3, . . of a random
experiment and let A ⊂ . Define then a measure P : A → 0,1 with P  1. The triplet
, A, P is the usual probability space, which is measurable. A mapping X from  into R is a
random variable of this experiment, that is measurable with respect to A, if and only if
 ∈  : X ∈ B ∈ A holds for all Borel-sets, B.

A stochastic process can be defined by means of this X if it is additionally parameterized
as follows.

Definition 2.1. A collection Xt, .  : t ≥ 0 of random variables X :   T → R, T  0,
is called a stochastic process. Here for each point  ∈ , the mapping t → Xt, is a
realization, sample path or trajectory of the stochastic process.

Definition 2.2. A real-valued stochastic process that depends continuously on t ∈ 0,T
W  Wt, t ≥ 0, W : T   → R is called a Brownian motion (BM) or a Wiener process if
1. W0  0 a.s.,
2. Wt − Ws is N0, t − s, Gaussian distribution with mean 0 and variance s − t, for all
t  s  0,
3. for all times 0  t1  t2 . . . tn, the random variablesWt1,Wt2 − Wt1, . . . ,
Wtn − Wtn−1 are independent.
Also, the expected values of Wt and W 2t are given respectively by EWt  0,
EW 2t  t for each time t  0.

Definition 2.3. Let 0  t1  t2 . . . tn be a partition of the interval 0,T and let
hWt, t  ht be a continuous function on 0,T. The stochastic integral 

0

T htdWt ,
which satisfies E 

0

T htdWt  0, is defined according to Itô as

Ih  
0

T
htdWt 

n→
lim∑

j0

n

htjWtj1 − Wtj. 1

Among the many other definitions of 
0

T htdWt is the Stratonovich integral, conceived as
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0

T htdWt 
n→
lim∑

j0

n

h tj  tj1

2 Wtj1 − Wtj.

Definition 2.4. (Convergence) If Ih is the exact value of a stochastic integral and Ĩnh is its
approximate value, then we have
1. Strong convergence when
E|Ih − Ĩnh| → 0, n → .

2. Weak convergence when
|EIh − EĨnh|→ 0, n → .

3. Mean square convergence when
E|Ih − Ĩnh|2 → 0, n → .

Examples: According to Itô’s definition one has
1. 

0

T WtdWt  1
2 W

2T − 1
2 T,

2. 
0

T hm1W, tdWt  hmW, t,
where hmt is the Hermite polynomial of degree m given by

hmx, t 
−tm
m! e x2

2t dm
dtm e

−x2
2t . 2

3. Main Results

In this section, we will show that the stochastic integral (1) could be approximated by a
Gaussian quadrature. To arrive at our main result (Theorem 3.1), we need first to state the
following lemmata.

Lemma 3. 1. [2] If a random variable X is distributed as N,2,a Gaussian distribution,
then the random variable Y  a  bX, b ≠ 0 is distributed as Na  b,b22.

Lemma 3. 2. If Wt is a Wiener process, and Vt  2
T W

T
2 t  1 − t, then

Vt  N−t, 21t
T .

Proof. The proof of this lemms is trivial; by assuming
a  −t, b  2

T .
in Lemma 3.1.

Theorem 3.1. Let 1  2  3 . . . N be the roots of a Legendre polynomial of degree N
and let k, k  1,2, . . . ,N be the corresponding weights. A quadrature approximation to the
stochastic integral (1) is
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0

T
htdWt ∑

k1

N

k gk  Rf, 3

where Rf is a remainder term of this formula and k  N0, 4k1−k
T2 .

Proof. Use the linear transformation   T1t
2 , to write


0

T htdWt  
−1

1 gdW∗,

where gt  h T2 1  t andW∗t  W T1t2 . SettingW∗t  T
2 t  Vt leads to


0

T htdWt  T
2 

−1

1 gtdt  
−1

1 gtdVt  T
2 I1  I2.

Since the function gt is assumed to be continuous, then a quadrature formula could be used to
represent I1 by
I1  ∑k1

N k gk  R1f.
According to Itô’s definition of the stochastic integral, the second integral, I2, is equal to

I2 ∑
k1

N

gkVk1 − Vk  R2f  ∑
k1

N

gk k  R2f

where
k  Vk1 − Vk.

Hence,


0

T
htdWt  T

2 ∑
k1

N

k gk  Rf, 4

where
k  k  k, Rf  T

2 R1f  R2f.
Apply finally Lemma 3.2 to Itô’s definition of the stochastic integral to conclude that

k  N0, 4k1 − k
T2 , 5

and to end the proof. 
The k’s of (5) are random numbers. Moreover, for the construction of quadrature formulae

with minimal error, the k’s should be nonnegative numbers. It should be noted however that
the error R2f has no closed form; unlike the error R1f which has a closed form that depends
on the differentiability of the integrand ht, see [3].

3.1. Convergence

Theorem 3. 2. If the stochastic integral

Ih  
0

T htdWt,
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Ĩh  T
2 ∑

k1

N

k gk,

then
i EIh − Ĩh  0,

ii EIh − Ĩh2 ≤ B logN
N

where B is a constant.

Proof. It is straightforward to see that

0 ≤ |EIh − Ĩh| ≤ |EIh||EĨh|  0  E T2 ∑
k1

N

k gk

≤ T
2 ∑

k1

N

|Ek| |Egk| 0,

which implies the strong convergence of (i). To prove the second part (ii), let us obtain an
estimate for EIh2 as follows.

EIh2  E 
0

T htdWt
2

 E ∑
k1

N

hk Wk1 − Wk

2

∑
k1

N

Ehk Wk1 − Wk2 ∑
k1

N

Ehk2 EWk1 − Wk2

∑
k1

N

Ehk2 tk1 − tk  T ∑
k1

N

Ehk2

Since gt  h T2 1  t, then

EIh2 ≤ A ∑
k1

N

Egk2, 6

always holds for some constant A. Subsequently

EIh − Ĩh2  E Ih − T
2 ∑

k1

N

k gk
2

 E I2h − 2Ih ∑
k1

N

k gk  ∑
k1

N

k gk
2
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 EI2h ∑
k1

N

Ek gk2  2∑
k1

N

∑
k1

N

Ek j gk g j

 EI2h ∑
k1

N

Ek Egk2

≤ A ∑
k1

N

Egk2  4
T2 ∑

k1

N

Egk2 k1 − k.

As roots of an orthogonal polynomial satisfy [6],
k1 − k ≤ C logN

N ,
then there exists a constant B such that
EIh − Ĩh2 ≤ B logN

N ,

and here the proof ends. 
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