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Abstract. In this paper, we study the almost sure moment exponential stability of mild
solutions of stochastic neutral partial functional differential equations in real separable
Hilbert spaces using local Lipschitz conditions. Even in the special case, when the neutral term
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al, J. Differential Egns. 181 (2002), 72-91].
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1. Introduction

In this paper, we consider a semilinear neutral stochastic differential equation in a real
separable Hilbert space of the form:

dix(t) +f (t,x)] = [AX(t) + a(t,x¢)]dt + b(t, x;)dw(t), t>0; D)

X(t) = @), te[-r,0] (0<r< o), (2)
where x¢(s) = x(t+5s),—r < s <0, and the equation to be made precise later (see Section 2).
Equation (1) when f = 0 has been well studied, see [4,8] and the references cited therein.

A study of such class of equations (1) was initiated recently in Govindan [2]. Using a
global Lipschitz condition on the nonlinear terms f(t,u), a(t,u) and b(t,u), existence and
stability problems were addressed in [2]. Subsequently, in Govindan [3], the existence and
uniqueness of a mild solution was considered by assuming only a local Lipschitz condition.
Even in the deterministic case (when b = 0), very little is known on equation (1) though this
class of equations models problems of stabilization of lumped control systems, see Hernandez
et al [6]. See, also [5].

In this paper, our goal is to study the exponential stability of the quadratic moments of a
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mild solution of equation (1) exploiting local Lipschitz conditions on the nonlinear terms; and
using the latter to deduce the almost sure exponential stability of the second moment of the
sample paths of a mild solution. Taniguchi, et al, [9] considered such problems in the special
case (when f = 0) for the p" — moment (p > 2) of a mild solution. So, when p = 2, the results
established here appear to be new even in this special case.

The format of the rest of the paper is as follows. In Section 2, we give the preliminaries
containing several definitions from Taniguchi [8] and lemmas. We state all our assumptions
and also an existence and uniqueness result of a mild solution in Section 3. Section 4 is
devoted to the main result on almost sure exponential stability of the quadratic moments of a
mild solution of equation (1). In Section 5, an example is given to illustrate the theory.

2. Preliminaries

Let X,Y be real separable Hilbert spaces and L(Y,X) be the space of bounded linear
operators mapping Y into X. For convenience, we shall use the same notation || to denote the
norms in X,Y and L(Y,X) and use (-,-) to denote inner—product of X and Y without any
confusion. Let (Q2,B,P,{Bt}0) be a complete probability space with an increasing right
continuous family {Bi}wo of complete sub—c—algebras of B. Let fn(t)(n =1,2,3,...) be a
sequence of real-valued standard Brownian motions mutually independent defined on this
probability space. Set

W(t) = 37, 7 Ba(tlen, 20,

where A, >0(n =1,2,3,...) are nonnegative real numbers and {e,}(n=1,2,3,...) is a
complete orthonormal basis in Y. Let Q € L(Y,Y) be an operator defined by Qe, = Anen. The
above Y-valued stochastic process w(t) is called a Q-Wiener process. Now, we define a
real-valued stochastic integral of Y-valued Bi—adapted predictable process h(t) with respect to
the Q—Wiener process w(t).

Definition 2.1. Let h(t) be a Y-valued B—adapted predictable process such that
Ej0|h(t)|2dt < oo forany t € R*, where R* = [0, ). Then, we define the real-valued
stochastic integral j;<h(s), dw(s)) by

t 0 t

[(h),dw(s) =327, [ (h(s),en)dw(s)en,
where w(s)en = (W(S),€n) = 4/An Bn(S).
Definition 2.2. Let h(t) be an L(Y, X)—valued function and let A be a sequence
{J1,/r2,...}. Then we define

© 1/2
h®l: = {37, [V heal? 3.

If |h(t)]? < oo, then h(t) is called A-Hilbert—Schmidt operator and let c(A)(Y, X) denote the
space of all A-Hilbert-Schmidt operators from Y to X.

Next, we define the X—valued stochastic integral with respect to the Y-valued Q-Wiener
process w(t).

Definition 2.3. Let ® : R* - o(A)(Y, X) be a predictable, Bi—adapted process. Then, for any
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® satisfying j; E|d(s)|2ds < oo we define the X-valued stochastic integral j; d(s)dw(s) € X
with respect to w(t) by

([L @s)dw(s),h) = [ (@ (s)h,dw(s)), h e X,
where ®* is the adjoint operator of ®.

A semigroup {S(t),t > 0} is said to be exponentially stable if there exist positive constants
M and a such that ||S(t)|[< Mexp(-at), t > 0, where ||+|| denotes the operator norm in L(X, X). If
M = 1, the semigroup is said to be a contraction. If {S(t),t > 0} is an analytic semigroup, see
Pazy, [7, p.60] with infinitesimal generator A such that 0 € p(A) (the resolvent set of A) then it
is possible to define the fractional power (-A)%, for 0 < o < 1 as a closed linear operator on its
domain D((-A)*). Furthermore, the subspace D((—A)%)) is dense in X and the expression

[IXlla = 1(=A)*X], X € D((=A)*),
defines a norm on X, = D((-A)%).

Let C be the space of continuous functions x : [-r,0] - X with the norm
Kl = sup [x(s)I

—r<s<

We now make the equation (1) precise: let A : D(A) < X — X be the infinitesimal generator
of a strongly continuous semigroup {S(t),t > 0} defined on X. Let the functions a(t,u), f(t,u)
and b(t,u) be defined as follows: a : R* xC -» X, f: R*xC »> X, and b : R* x C - L(Y,X)
are Borel measurable; and for each (t,u) are measurable with respect to the c—algebra B:. Let
MC(t) denote the space of all B; — measurable functions which belong to L2(Q,C), that is,
MC(t) is the space of all B; — measurable C — valued functions n : Q — C with the norm
EllnllzZ = E sup |n(s)|? < o, see [9]. The past process ¢ € MC(t).

—r<s<0

Next, we introduce the concept of a mild solution of equation (1).

Definition 2.4. An X — valued stochastic process {x(t),t € [-r,T]}(0 < T < o) is called a
mild solution of equation (1) if

(i) x(t) is Bi-adapted with [ [x(D|dt < o0, as.,
(i) x(t) = o(t), t € [-r,0] a.s., and
(1ii)x(t) satisfies the integral equation
x(t) = S(O[e0) +1(0,p)] —f(t,xt) — I;A S(t — s)f(s, xs)ds
+ [ S(t-s)a(s,xs)ds + [ S(t—s)b(s,xs)dw(s), as., te[0,T].

We will need the following results in the sequel.

Theorem 2.1.[7, p.74] Let —A be the infinitesimal generator of an analytic semigroup
{S(t),t > 0}. If 0 € p(A) then,
(@ S(t): X - X, foreveryt > 0anda > 0.
(b) For every x € X, we have
S(HA*x = A*S(t)x.
(c) Foreveryt > 0 the operator A*S(t) is bounded and
JA“S(H)|I< M te?, a> 0.
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(d) Let0O < a <1andx € D(A%) then
IS()x — X|[< Cat*||A%X||.

Lemma 2.1.[5] Let —A be the infinitesimal generator of an analytic semigroup of bounded
linear operators {S(t),t > 0} in X. Then, for any stochastic process F : [0,20) — X which is

strongly measurable with j; E|(-A)*F(t)|Pdt < o0, p > 2and 0 < T < oo, the following
inequality holds for 0 <t < T:

E|[ (-A)S(t-9)F(s)ds|” < k(p,a,a) [} EI-A)*F(S)]ds,

provided 1/p < a < 1, where

_ pP (e-DPT((pa=1)/(p-1))]Pt
k(p’a! (Z) - lea (pa)pa—l !

and I'(+) is the Gamma function.

3. An Existence and Uniqueness Result

In this section, we consider the existence and uniqueness of a mild solution of equation (1)
using local Lipschitz conditions.
Let the following assumptions hold a.s.:
(H1) A is the infinitesimal generator of an analytic semigroup of bounded linear operators
{S(t),t > 0} in X and that the semigroup is a contraction,
(H2) The functions a(t,u) and b(t,u) are continuous and that there exist positive constants
Ci = Ci(T),i=1,2such that

|a(t1 U) - a(t,V)lE Cl”“ - V”C’

|b(t! U) - b(t,V)lx < CZHU - V”C!

forallt € [0,T]and u,v € C.
Under this assumption, we may suppose that there exists a positive constant C3 = C3(T) such

that
la(t, u)|? + [b(t,u)|5 < C5(1 + [|ull3).

(H3) The function f(t,u) is continuous and that there exists a positive constant C4 = C4(T)

such that
[If(t, u) — f(t, V)|« < Callu —Vllc,

forallt € [0,T]and u,v € C.
Under this assumption, we may suppose that there exists a positive constant Cs = Cs(T) such
that

[If(t, wle < Cs(1+|ullc).
(H4) f(t,u) is continuous in the quadratic mean sense:
limes E||f(t, xt) — f(s,Xs)]|2 — O.
In the rest of the paper, we shall restrict « to the interval 1/2 < a < 1.

Theorem 3. 1.[3] Suppose that the hypotheses (H1)-(H4) are satisfied. Then, the problem
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(2)—(2) has a unique mild solution. Further, if t, < oo, then It%tm E|x(1)]|2 = oo.

To prove this theorem, assume T > 0 is a fixed time. Let I't be the subspace of all continuous
processes x which belong to the space C([-r,T],L%(€, X)) with the norm ||X||r; < oo, where
[y == sup (ElIxdlI2) 2. See [9].

Defineamap GonTI'r:
(G = SM[e(0) +(0,0)] —f(t,xt) - ILAS(t —9)f(s,xs)ds
+ ; S(t - $)a(s, Xs)ds + | ; S(t — 5)b(s, xs)dw(s), t> 0, (3)

(G = o), te[-r0] 4)
3.1. Sketch of the proof of Theorem 3.1

First, show the continuity of the map G defined on [0, T] and taking values in L?(Q,X)
thereby showing that it is a well-defined map in the space C([-r,T],L?(€2,X)). Second, show
that G maps I't into itself.

Let X,y € I'r. Then for any fixed t € [0, T], we have

Ell(GX)t — (Gy)ilI& = E sup [(Gx)(t+0) — (Gy)(t+0)[?

< 4{E sup [f(t + 6, Xwg) — f(t + 6, Yr0)|?

—r<6<0

SE sup [[5A)S(t+ 0 - 9)[f(s,x0) — (s, ys)]ds |

—r<6<0

+E sup f:g S(t+ 6 —s)[a(s, xs) — a(s,ys)]ds | ’

—-r<6<0

t+0 2
+E sup jo S(t+ 6 —s)[b(s,xs) — b(s,ys)]dW(S)| }
—r<6<0

< 4CEI(-A) |12 sup Ellx - ¥l

M2 T'(20-1)

+ 4 (2a) 20-1

TC3 sup E|lx; — yi[|2
0<t<T
+4TCZ sup E||x¢ — y|2
O<t<T
+ 4k TC3 sup E[|x¢ — yel|2.
0<t<T

Now choosing T > 0 sufficiently small, we can find a positive number K(T) € (0, 1) such that
IGX = Gyllrr < K(DIX = Yllrs,
for any x,y € I't. Hence, by the Banach fixed point theorem, G has a unique fixed point

x € I't and this fixed point is the unique mild solution of equation (1) on [0, T]. Next, we
continue the solution for t > T, see Govindan [3] and the references therein.
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4. Almost Sure Exponential Stability

In this section, we consider the exponential stability of the second moment of a trivial
solution of equation (1). For this we need a further assumption. See [9].
(H5) There exist nonnegative real numbers Q1,Q2 > 0, 0 < Q3 < 1 and continuous functions
& RY > R*, j =1,2,3such that

Ela(t w)l” < Q:E[lull + &1(1),

Elb(t, w3 < Q2E|ullz +&2(),

and
[If(t, Wll« < Qsllullc +&a(t), a.s.

for t > 0, and there exist nonnegative real numbers P1,P2,P3 > 0and § > a > 0 such that
IEi(D)|< Pje‘&, j=123; t>0.

Assume from now on that a(t,0) = b(t,0) = f(t,0) = 0 a.e. t so that equation (1) admits a

trivial solution.
The following lemma is needed to consider the main result.

Lemma 4.1.[5] Let —A be the infinitesimal generator of an analytic semigroup of bounded
linear operators {S(t),t > 0}. Then, for any stochastic process F : R* - X which is strongly

measurable with jo E|(-A)*F(t)|?dt < o, 0 < T < oo, the following inequality holds:
[} (-A)S(t - S)F(s)ds|2 < M B [! g-at-9E| () F(5)|2ds,

aZa—l

provided 1/2 < a < 1.

Theorem 4.1. Let the hypotheses (H1)—(H5) hold. Suppose that the semigroup {S(t),t > 0} is
exponentially stable. Then, the mild solution of equation (1) satisfies

|2 < Ke®, t>0; K,0>0,

provided
2M2_, T(2a-1) Q3 Q
(1_33)2 |: : 2201 =+ Tl + 4Q2:| <a.

Proof. Consider the mild solution
X() = S(8)[p(0) + (0, 9)] — f(5,Xs) = [ AS(s — )f(z, X )de
+| Z S(s - )a(z, x.)dr + [ : S(s — 7)b(z, X )dw(z).
By assumption (H5) and Theorem 2.1, we obtain
X()] < [S(8)p(O)HS(S)(O, @) +If(s, Xs)l+ [ . AS(s — f(z, x:)de |
+|] 0 S(s - )a(z,x.)dz | + | 0 S(s — 7)b(z,x-)dw(7) |

< [5G)llllelle +ISOI{Qsllellc + &3(s)}
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+{Qalixsllc + £a(9)} + | [ AS(s ~ Df(z,xo)de |

+|] 0 S(s - )a(z,x.)dz | + | 0 S(s — )b(z,x:)dw(z) .
Applying first Lemma 7.2 [1, p.182] and then Lemma 4.1 and Lemmas 4.1-4.2 [8], we have
(1-Qa)%ElIxdlIz < 4{E[Me~(1+ Qa)llpllc +2&3(H)]

2 _ t
M 8D [f e -at-9E|(—A)“f(s, X,)|2ds,

aZa—l

t
+1 jo e-at9E|a(s, Xs)|2ds

+ 4]; e at9E|h(s, xs)lids}.

Assumption (H5) then yields

e Elilz < - {EL(L + Qa)llpllc +2Ps]?

2M?_ T(2a-1) [t
+ [ e=[QFEIIxs|IZ + £3(s)]ds,

+ 1 [ e[QuElIx|I2 + £1(s))ds

+4] ; e®[Q2E||xs[|2 + éz(s)]ds}

< i {2+ QuVElpl +P3+ (5 +P2)
2M2_ T'(20-1)Q3 ¢
+ [% + % + 4Q2:|-[0 eaSE”XS”(Z:dS}
Letting
K = {21+ Qo) ?Ellgll2 + P} + (% + P2}
and

4 2M2__ I'(2a-1)Q2 o)
y = (1*Q3)2 [ - a2a—1 : + Tl + 4Q2}’

we get
eElxill2 < K+7 [ e®Ellxs[|3ds.
Invoking Gronwall’s lemma, we have
Elixdlz < Ke™, t>0,
where 0 = a—vy. |

Theorem 4.2. Suppose that all the conditions of Theorem 4.1 hold. Then the mild solution of
equation (1) satisfies
lime. sup <+ log|x(t)|< —%, a.s.

Proof. Let N be a sufficiently large positive integer. Let N <t < N + 1. Then,



T. E. GOVINDAN

X(t) = S(t—N)IX(N) + F(N, x(N)] —(t,x) — [} AS(t—$)f(s,xs)ds

+| ‘N S(t - s)a(s, xs)ds + [ ‘N S(t — $)b(s, X )dw(s).
Letting L = 1 — Qg3, we have
X(O] < LISt~ N)X(N) + (N, X(N))|+-- | | L AS(t — s)f(s,xs)ds|

+ [ St=9ats xads| + L[] St s)bs x)dw(s)|.

Thus, for any ey > 0, we obtain

sup

i {
N<t<N+1

+P{ sup

N<t<N+1

+P{ sup
N<t<N+1

+P{ sup
N<t<N+1

)ZE[

< (4

— EN

4 2 1
+(57)E| sup &
[ N<t<N+1
29)%E|l sup L
+ ( EN ) p LZ
[ N<t<N+1
29)%E| sup L
+ ( EN ) p LZ
[ N<t<N+1
4
=2, hi, say.

|X(t)|> SN} < P{
N<t<N+1

[\ AS(t—9)f(s,x:)ds| > T}

1
L

1
L

N<t<N+1

sup L[St = N)[X(N) + f(N, x(N))] |

sup  +IS(t = N)[X(N) + f(N,x(N))]| > =+

L j‘N S(t—s)a(s,xs)d5| > TN}

[, S(t=9)b(s,xs)dw(s)| > TN}

|

L AS(t-9) f(s.xs)ds|” J
J St - )a(s,xs)ds| 2}

LSt - 5)b(s,xs)dw(s) |
[}, SE=9)b(s,x)dw(s) |

In view of assumption (H3) and Theorem 4.1, we have

< 4
s < (LEN

<< 4
- LSN

) ZEXNI? + 2QFEd2 +2P3e 2]

) 1@+ 2Q3)ElIxi[12 + 2P3e2M]

< (1)1 + 2Q3)Ke™™ + 2PZe2M],

Hence, one can find a constant L, > 0 such that

< 4
s < (LEN

)2 L e-ON2,

Next, by assumption (H2), Lemma 2.1 and Theorem 4.1, we have

}
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1 < (& )ZE‘ N Asie - s)f(s,xs)ds‘z

(YLD Mg a e

Len (Za)er 1
2 M2 I (20— b5 N+1
< (&) B2 ] T IQREIIIE + Ea(s)]ds

< (LiN ) Loe N,
for some constant L, > 0, and

ls < (& N+1S(t— s)a(s, xs)ds‘
< ()" [} Elats xs)2ds
< ()" TN IQUENX[IE +E1(9)]ds

= (LSN >2L38_9N,

for some constant L3 > O.
Finally, by using Lemma 5.1 [2], Lemma 7.7 [1] together with assumption (H2) and Theorem
4.1:

2 N+1
ls < (££) " 4], TQoEIX|I2 + £a(s)]ds
2 —_
< (&) ’Lie™, Li>o

Hence, there exists a constant n > 0 such that
P(supnzisnsaX(D]> en) < —-e N2,
N

Therefore, the conclusion follows from the Borel-Cantelli lemma. [ |

5. An Example

Consider the stochastic partial neutral functional differential equation with finite delays
ry,rzandrz(oo >r>r;>0,i =1,2,3):

[z(t X)+ T ° fl(t,z(t+u,x))du} = [ Z2(t,x) + aran(t 2(t - rix)) Jdt
+ azbi(t,z(t — rp,x))dp(t), t> 0; (5)
ai >0, 1=1,23; z2(0) =z(tnr)=0, t>0;

2(s,X) = ¢(s,X), o(s,*) € L?[0,n], -r<s<0, 0<x<umn;

where B(t) is a standard one—-dimensional Wiener process and E|[g||2, < . Note that when
as = 0, equation (5) reduces to the stochastic heat equation, see [4,9].

Let the functions ai(t,u),bs(t,u) and fi(t,u) be defined as follows: a; : R* xR - R,
fi1 : R* xR -> Randb; : R* xR - R are continuous with respect to the second argument.
Moreover, let the following assumptions hold a.s.:

(A1) The functions ai(t,u) and by (t,u) satisfy the local Lipschitz conditions:
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lai(t,ur) —ai(t,uz)|< Ci(t)|ur —uz|, Ci(t) > 0;

|bi(t,u1) — ba(t,u)|< Ca(t)|ur —uz|, Ca(t) > 0;
forall ui,u; € R,
(A2) The function f1(t,u) is continuous in t and satisfies:
[f1(t,u1) — fa(t,u2)|< Cs(t)|ur —uz|, Cs(t) > 0;
forall uy,u, € R.
(A3) The function fy(t,u) is continuous in the sense that
limes|fa(t, ue) — fa(s,us)|~ 0.
(A4) There exist constants Q1, Q2 and Qs > 0 and continuous functions &1,&2,&3 : R - R*
as in assumption (H5) such that
a1 (t,u)|? < Quful? + &1(D),

lb1(t, WI? < Qzlul? + &2(),
and

[f1(t, W)I< Qslul+&3(D),
forallu e Randt > 0.
Assume further that a;(t,0) = b1(t,0) = f1(t,0) = 0 a.e. t so that equation (5) admits a
trivial solution.
Take X =L?[0,7], Y =R = (—0,00). Define A:X > X by A=0%0ox?> with domain
D(A) = {w € X : w,d/ox are absolutely continuous, 0?w/ox? € X, w(0) = w(x) = 0}. Then

Aw =3 " n?(w,wn)wn, W e D(A),
where wn(x) = /2/7 sinnx,n = 1,2,3, ..., is the orthonormal set of eigenvectors of A. It is

well-known that —A is the infinitesimal generator of an analytic semigroup {S(t),t > 0} in X,
and is given by

S(hw = 3.7 e (W, Wp)w, W e X,

that statisfies ||S(t)||< e ™", t > 0. We define A (actually |A|*) for self-adjoint operator A by
the classical spectral theorem
AlreAtw = 37" (n2)%e (W, Wn)Wp,
see Taniguchi, et al [9].
Define now

f(t,z) = ° z(t + u,x)du,

a3
I=A I —r

a(t,z) = aza(t,z(t - ra,x)),

and
b(t,z¢) = azba(t,z(t —r2,X)).
Next,
It 20lle = | ey 17, ARt 2(t+ u0)du

a3 0 a
< oy 3 j_rsl(—A) z(t + u,x)|du
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< (13I’3C3(t)||2t||c, a.s.

This shows that f : R* x C - X, and it follows that f(t,u) satisfies a local Lipschitz condition
with constant a3y3Cs(t). Similarly, one can show that a:R*xC - X and
b : R* x C - L(Y,X). Hence, equation (5) can be expressed as equation (1).

By assumption (A1), we have

[act.zd) ~atzp)P = [lar(tz (t-r,%) —au(tz2(t-r1,x))dx
< CR(t) [ [21(t = r1,%) — 22(t = 11, )| 2dx

< nCEOllzt - fllc,

demonstrating that a(t,u) satisfies a local Lipschitz condition. It can be verified similarly for
b(t,u).
Further, by assumption (A4):

lat,z)[2 = [ [as(t,2(t - r1,%))|%dx
< [ [Qul 2(t—ri, 1% + &1(t) Jdx

< Qurllzil| + m&1(t), t>0.

The remaining conditions can be verified similarly. Thus, all the assumptions of Theorem 4.2
are fulfilled. Therefore, the almost sure exponential stability of a solution of equation (5)
follows provided

Qs < 1/3r3,
andforo <m < 1,
_ —m)7120-a) ~1)02
4 |: A0-a)/@-mPPToIT@e Qs | Qu  , Q2:| < 2

(1_Q3)2 n2(211—1) 7.[2
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