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Abstract. This paper studies the controllability of neutral stochastic integrodifferential evolution
equations in Hilbert spaces. By employing the resolvent operator theory in the sense of Grimmer,
stochastic analysis, and a fixed point approach, the sufficient conditions of exact controllability, for
such a system, are established. We provide an example to illustrate the effectiveness of the proposed
result.
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1. Introduction

Using stochastic differential equations to model dynamic phenomena is helpful when predicting
precisely how the modeled system will behave. Modeling the noises that occur in a variety of fields,
such as financial mathematics, hydrology, medicine, and telecommunications networks can be
performed with stochastic differential equations that are driven by fractional Brownian motion ( see,
for example, [4,6,23] and the references therein). Moreover, the Rosenblatt process is a helpful tool
when the Gaussianity property of the model does not make sense when dealing with data that does
not fit a normal distribution. As is well-known, the Rosenblatt process is non-Gaussian with many
exciting properties, such as stationarity of the increments, long-range dependence, and
self-similarity. There exists consistent literature that focuses on different theoretical aspects of the
Rosenblatt processes. In the past ten years, it has undergone substantial development; for example,
see the papers [9,38 — 40] in which the numerous properties of the Rosenblatt process are examined
and detailed. Because of this, it would be interesting to research a new class of fractional stochastic
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differential equations driven by the Rosenblatt process. We want to direct the reader to the extensive
work in [1,3,9-11,13,16,18,25,28,29,33,34,42] and [5] and references listed in those sources for
additional information. Recent research carried out by Shen et al. [35] established the existence and
uniqueness of a mild solution for a neutral stochastic partial differential equation with a finite delay
driven by the Rosenblatt process in a real separable Hilbert space. Shen et al. [36] investigated the
controllability and exponential stability in the pth moment for stochastic differential systems driven
by the Rosenblatt process. Sakthivel et al. [32] used fixed point theory to investigate the existence
results for retarded SDEs with infinite delay driven by the Rosenblatt process. Caraballo et al. [6]
investigated the existence and uniqueness of a mild solution for an impulsive stochastic system
driven by a Rosenblatt process. They did this using the Banach fixed point theorem and the theory of
resolvent operators developed by R. Grimmer in [19]. Also, they got exponential stability in the
mean square for the mild solutions by using an integral inequality.

Controllability is one of the most essential and fundamental concepts in mathematical control
theory. Both deterministic and stochastic systems stand to gain a great deal from their presence and
application (for additional details, see [2, 41] and the references there in). The study of
controllability of stochastic partial differential equations is one of the topics that researchers are
currently focusing on. We refer the reader to [8, 20, 23].

Our main goal in this study is to look into the controllability of nonlinear neutral evolution
equations, driven by the Rosenblatt process, of following form.

d[9(1) - h(t,9(0)] = [ A[9() — h(2,9()] + [ Y(t = $)[8(s) — h(s. 9(s))] ds
+Cu(d) + F(t, [0 p(s,9(s))ds> Jdt + g0 dzpo).t € 1=10.5), (1)
8(0) = Yo,

where the state 3(+) takes values in a separable real Hilbert space X with inner product (-, -),
A : D(A) € X - X is the infinitesimal generator of a Cy-semigroup (T(?))~o with domain D(A),
Y(z) is a closed linear operator on X with domain D(Y(#)) > D(A) which is independent of 7. The
control function u(-) takes values in £2(Z,U), the Hilbert space of admissible control functions for a
separable Hilbert space U. C is a bounded linear operator from U into X. F:[Ix X - X;
h:IxX->X;p:IxX->Xandg: I~ £3(K,X) are appropriate functions to be specified later,
ZH is a Rosenblatt process in real separable Hilbert spaces with Hurst parameter H (%, 1).
In [19], R. Grimmer considered the following integrodifferential equation:

9() = AY®) + [ Y(t - 5)9(s)ds + E(®) for t = 0
9(0) = 9o € Y,

2)

where, Y is a Banach space and & : R, — Y is a continuous function. The author was able to get
some results about the existence, regularity, and asymptotic behavior of solutions to the equation (2)
by using resolvent operator theory. These findings are presented in the form of a variation constant of
formula. Note that in [12], the authors discussed via a-norm the controllability results of (1) with
Y =0, and the presence of fractional Brownian motion. In this study, we ignore these two
assumptions and instead make the assumption that the linear component possesses a resolvent
operator in the sense that it is described by Grimmer and that the system is driven by a Rosenblatt
process.
The contributions made by this manuscript fall into the following categories:

e The formulation of nonlinear stochastic functional integrodifferential control system with the
Rosenblatt process incorporated.
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» The resolvent operator theory, in the sense of Grimmer, is utilized, together with the Grammian, for
the purpose of achieving sufficient conditions in a stochastic setting and to ensure that the system (1)
is controllable.

e An example is given to show the findings of the theoretical analysis that was carried out.

The following is the paper’s structure: In the second section, we will review some fundamental ideas
about integrodifferential equations in Banach spaces and the Rosenblatt process. In Section 3, we
investigate the controllability of the stochastic system (1). Finally, we provide a working example
that illustrates the proposed theory in this paper.

2. Preliminaries

In this section, we present some basic concepts, definitions, and lemmas that are required to
obtain the results. Throughout this paper, it is assumed that % <H <1 and let (QQ,F,P) be a
complete probability space and for ¢ > 0, F; denote the o-field generated by {Z"(¢)(s),s € [0,7]}
and the P-null sets. Let X be a separable Hilbert space with inner product (+,+) and norm || « ||. The
collection of all strongly measurable, square integrable X- valued random variables denoted by
£2(Q, F,P,X) = £2(Q,X) stands for the space of all X-valued random variables G such that
E|G|> = IQ | G |I> dP < . Let £(K,X) denotes the space of all bounded linear operators
from K to X and O € £(K,K) represents a non-negative self-adjoint operator. Let £§,(KK,X)be the
space of all functionsI" € £2(KK, X) such that TQ"? is a Hilbert-Schmidt operator. The norm is given
by | T ||§% = || TQ" ||? = Tr(TOI'*) and T is called a Q-Hilbert-Schmidt operator from K to

X.
2.1. Rosenblatt process

Let [0,b] denote a time interval with arbitrary fixed horizon b and let {Z"(¢),7 € [0,b5]} be a
one-dimensional Rosenblatt process with parameter H € (%, 1). Now, the Rosenblatt process with

parameter H > % can be written as [40]

zu) = da [ [ K ) Ky |asase). ©)

YiVyz2
where KH(¢,5) is given by

t
KH(z,5) = m(H)s%’HJ. (u — s)H3240120y for t > s,

with

m(H):‘/ H(2H—1)1 ,
p2-2HH-1)

B(-,+) denotes the Beta function, K"(z,s) = 0 when ¢ <'s, (B(¢),t € [0,b]) is a Brownian motion,

H' = &L and d(H) = 55 2(23_1) is a normalizing constant. The covariance of the Rosenblatt

process {Zu(t),t € [0,b]} is
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B(Zu()Zu(s)) = %(S2H+t2H—| s—t ]2,

The covariance structure of the Rosenblatt process allows to construct Wiener integral with respect
to it. We refer to Maejima and Tudor [27] for the definition of Wiener integral with respect to
general Hermite processes and to Kruk, Russo, and Tudor [31] for a more general context (see also
Tudor [40]).

Notice that

b b
2u(0) = [ |, Z000)01.92)dB(1)dB(),

where the operator 7 is defined on the set of functions G : [0,5] —» R, which takes its values in the
set of functions G : [0,b]> -» R? and is given by

(G)(1.y2) = d(H) jj . g(u)fﬂa(—:(u, ") alguH’ (u,y2)du.

Let G be an element of the set £ of step functions on [0, 5] of the form

n—1

g = Zail(l‘,‘,l,ur]]a ti € [Oﬁb]‘
i=0

Then, it is natural to define its Wiener integral with respect to Zy as

b -l b eb
[ gwazuw) = Y a@utn) -zZu@w) = | [ TG)(1.y2)dBG1)BG:).
0 — 0v0
Let H be the set of functions G such that

b pb
113 = 2[ [ @@@ry2)dvidys < o

It follows from [40] that
b ¢b
1613 = HQH-1) [ [ G@)G0) | u=v |42 dudy,
and it has been proved in [27] that the mapping
b
G~ [ Gudzu)
0
defines an isometry from £ to £2(Q2). Because £ is dense in H, it can be extended continuously to an
isometry from H to £2(€) . We call this extension as the Wiener integral of G € H with respect to

Zy. It is noted that the space H contains not only functions but its elements could be also
distributions.  Therefore it is suitable to identify subspaces | H | of H

| H |= {g:[o,b] SR j’;[’; | G) || GO) | u—v |12 dudv<oo}. The space | H | is
not complete with respect to the norm || +||  but it is a Banach space with respect to the norm

b b
1913 = HEH=D [ [ 1 @) 11 G0) | u=v ¥+ dudy.
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As a consequence, we have
£2([0,b]) < L£Y8([0,b]) | H |C H.
For any G € £2([0,b]), we have

b
G113 < 2HB [ ] G(s) |2 ds

and
”g“ |'H | = m(H)”gngl/H(Ob (4)

for some constant m(H) > 0. Let m(H) > 0 stands for a positive constant depending only on H and
its value may be different in different settings.
Define the linear operator Kj; from £ to £2([0,5]) by

K1) = G0L (o

Y1Vya

where K is the kernel of Rosenblatt process in representation (3)

Kt,y1,y2) = lpogOi)l 0;()’2)_‘. aKu (u,y1) aKu (u,y2)du.

Y1 y2
Note that (K{j1107)(v1,32) = K&y1,¥2)110001)110,1(2). The operator Kjj is an isometry between
Eto £2([0,5h]), which can be extended to the Hilbert space H. In fact, for any s, € [0,b] we have

(Kiilo.g, Kl [0,s]>,32([o,b]) = (K2, %, ) 1100, KC(s, %, +) 1105 >22([0,b])
INS pINS
= J.O J.O K(tayl7y2)K(S,y1,y2)dyldy2
t pes
=HEH-D[ [ 1wy 1202 dudv
00

= (L0.95 10,5 )

Further to this , for G € H, we have

b b
Zu(@) = | | (Ki@)(1.y2)dBG1)dB).

Let {z,(¢)} »en be a sequence of two-sided one dimensional Rosenblatt process mutually independent
on (€2, F,P). Consider then a K-valued stochastic process Zo(#) given by the following series:

o0

Zo(t) = D_z.(D0e,, t>0.

n=1

Moreover, if O is a non-negative self-adjoint trace class operator, then this series converges in the
space K, that is, it holds that Zo(¢) € £2(Q,K). Then, we say that the above Z(¢) is a K-valued Q-
Rosenblatt process with covariance operator Q. For instance, if {o,} ey is @ bounded sequence of
non-negative real numbers such that Qe, = o,e,, by assuming that Q is a nuclear operator in K, then
the stochastic process



54 E. KPIZIM, O. NDIAYE, H. HMOYED, and M. A. DIOP

o0

Zo(t) = D za(D0"en = D Jonza(Den, >0,

n=1 n=1

is well-defined as a K-valued Q- Rosenblatt process.

Definition 2.1 [40]. Let ¢ : [0,b] - £3(K, X) such that 3" [K{i(¢0"?e,)ll ¢2g0.5x) < . Then,
its stochastic integral with respect to the Rosenblatt process ZQ(t) is defined, for # > 0, as follows :
t ad t
[,0()dZo(s) =X [ ¢(s)0"endz(s)
n=1

" (5)
=3[! L (Kii(90"2€)) (91.92)dB(11)dB(y2).
n=1

Lemma 2.1 [37]. For y : [0,5] - £{,(K,X) such that 3" [[wQ"e, || gusg.x) < o holds, and for
any a, B € [0,b] with § > a, we have

B[ vedzow

" < m( - a>2HIZ j ly(s)0"2e, || 2ds.

n=1

If, in addition,

Z lw(£)0'?e,| is uniformly convergent for ¢ € [0, 5],

n=1

then, it holds that

B[ veazoe

C < m(E)(B - ) (RIS

2.2. Integrodifferential equations in Banach spaces

Let Y and X be two Banach spaces such that ||| x = [|[A3||+]| 3], 3 € X. A and Y(¢) are closed
linear operators on Y. Let C(R*,X), £(X,Y) stand for the space of all continuous functions from R*
into X, the set of all bounded linear operators from X into Y, respectively. In what follows, we
suppose the following assumptions:

(H1) A is the infinitesimal generator of a strongly continuous semigroup {T(#)}~o on Y.
(H2) For all # > 0, Y(¢) is a closed linear operator from D(A) to Y, and Y(¢) € £(X,Y). For any
9 € X, the map ¢ - Y(¥)9 is bounded, differentiable and the derivative ¢ - Y(¢)'9 is bounded
uniformly continuous on R*.

According to Grimmer[19], under the assumptions (H1) and (H2), the following Cauchy
problem

9() = AY(®) + [ Yt~ 5)9(s)ds for = 0
9(0) = 9o € V,

(6)

has an associated resolvent operator of bounded linear operator valued function R(¢) € £L(Y), for
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t=>0.

Definition 2.2 [19]. A bounded linear operator valued function R(¢) € £(Y), for ¢t > 0, is referred to
be a resolvent operator associated with (6) if :

(1)) R(0) = Tand ||R(®) || 2ev) < Me" for some constants M and .

(i1) For all each m € Y, R(#)m is strongly continuous for ¢ > 0.

(iii) R(¢) € L(X) fort > 0. Form € X, R(+) € C!([0,+[,Y) N C([0,+o[,X) and

R ()m = AR(H)m + j; Y(t - $)R(s)mds,
— R()Am + j; Rt — $)Y(s)mds, t > 0.

Now, we present some results on the existence of solutions for the following integrodifferential
equation:

9() = AY(®) + [ Y(t - 5)9(s)ds + E(®) for t = 0

9(0) =9 €Y,

where = : R, — Y is a continuous function.

(7

Definition 2.3. A continuous function 9 : [0,00[— Y is said to be a strict solution for equation (7) if
1. 9 € C'(R:,Y) NC(R,,X),
2. 9 satisfies equation (7) for ¢ > 0.

Remark 2.1. From this definition, we deduce that 3(¢) € D(A4), and the function s » Y(z — 5)3(s) is
integrable, for allz > 0 and s > 0.

Theorem 2.2 [19]. Suppose that hypotheses (H1) and (H2) hold. If 9 is a strict solution of (7), then
the following variation of constants formula holds.

9(2) = R()9o + j; R(¢ - s)E(s)ds, for ¢ > 0. (8)

Consequently, we can establish the following definition.

Definition 2.4 [19]. A function 3 : R, — Y is called a mild solution of (7) for 3¢ € Y, if 3 satisfies
the variation of constants formula (8).

Theorem 2.3[19]. Let = € C'([0,+00[;Y) and 9 be defined by (8). If $¢ € D(A), then 9 is a strict
solution for equation (7).

Theorem 2.4 [22]. Assume that ((H1)) — (H2)) hold. Then, the resolvent operator (R(t))s0 for
equation (6) is operator-norm continuous(or continuous in the uniform operator topology) for t > 0
if and only if (T(¢)) =0 is operator-norm continuous for t > 0.

Throughout this paper, let M := sup{||[R(?)||: 0 < ¢ < b}. Denote then the space of all
continuous JF,-adapted measurable processes from [0, 5] to £2(Q,X) satisfying sup E||3(?)|? < o
te[0,b]
by C([0,5], £(Q,X)).
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Let £, = C([0,b], £2(22,X)). The space &, equipped with the norm || 3] ¢, = (supte[o,b]]EIIS(t)lP)%
is a Banach space.

Definition 2.5. An F;-adapted processes 9(¢) is called a mild solution of system (1.1) if for all t
€ 1,9(¢) satisfies:

9() = RO[Go — h(0,90)] +h(t, (D) + [ R(t= )] Culs) + F(s. [ p(u, 9(w)dp) ]ds
+| ’0 R(t - 5)g())dZB(s),

where (R(#)) =0 denotes the resolvent operator of the linear part of (1).

9)

Definition 2.6. The system (1) is said to be controllable on the interval [0,5], if for every initial
value 99 € X, there exists a control function u € £2([0,5],U) such that the mild solution 3(¢) of (1)
satisfies 3(b) = 91, where 9, is a preassigned terminal state.

3. Controllability Results

The controllability results are derived in this section. We start by introducing the following
assumptions:
(A1) The semigroup (T(#)) o is norm-continuous for ¢ > 0.
(A2) The functions F : [0, b] x X — X satisfy the following Lipschitz conditions: that is, there is
constant Ly > 0 such that, for any 9;,9, € X and ¢ € [0, b],

[F(#, %) = F(t, 91> < Lr[191 = F2|1% 1 F(& 9D < Lr(1 + [191]17)
For the function p : [0, b] x X — X, there exists a constant L, > 0 such that

Ip(t,81) = p(t,92) 17 < Ly 191 = S, 1 p(&, SDII? < Lp(1 + [|31]12).

(A3) g € LH(K,X) with 3 [1g0"enll oy x) < .

n=1
(A4) The function 4 : I x X - X is satisfy the following conditions:
(i) 4 is continuous in the following sense:

mE(r, 9()) — h(s, 9(s)||> = 0;
(ii) For any 91,9, € X, t € [0, b],
EllA(t,91) = h(t,92)|I* < LiB[181 = 82117, E[A@8)II* < Ly(1 +E[3]?),

and L), < %
(A5) The linear operator L from £2(Z,U) to X defined by

b

Lu = _[ R(b — s)Cu(s)ds,
0

has an inverse operator IL! that takes values in £2(Z, U)\kerL see [7] and there exists finite positive
constants K, K. such that ||C||< K. and ||L7"||< K.
Now, by using assumption (AS), for an arbitrary function 9(+), we can introduce the following
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control:
ug()) =L7"{% —R®)[Io —1(0,0)] —h(b,9(b))
~ [ RO = )F (s.]; plu 90)du ) ds
- [ R = 5)g()dZ5(5) } ().
Define then the operator @ : £, — & by
(@9)(1) =R(O[Io—h(0,90)] +h(1,3(2)) + fto R(t -~ 5)[Cuj(s)
+ F((s. [ (. 9G0)d ) ds
+ ; R(7 — 5)g(s)dZ(s).

Lemma 3.1. Assume that (A1) — (44) hold. For every 9 € Ep, t — (DI)(?) is continuous on [0, b]
in L*(Q, X)-sense.

Proof. Forany 9 € £,,0 < t; < t, < b, we have
BI(@9)(12) - (®8)(1)
< SB||(R(t2) - R(1) (%0 — h(0,80) 12 + SB[ (e, 9(62)) — h(t1, 9()1>
+ SB[ R(2 = 5)F(s, p(u, 9u)) o)
[ R = 9F(s. [ plu,SG)du )ds |
+ SB[ R(2 = 9)g()dZ,(5) ~ [ R(t1 = 9)g(s)dZ(5)|1
+5E| [ ; R(12 ~ 5)Cu(s)ds — [ ; R(t, — 5)Cu(s)ds| 2

=J1+Jr+J5+J4 +Js5.

Now, we only need to check that J;, />, J3, JaandJs tends to O independently of 9 € £, when
= 1.
By the strong continuity of R(#) we have
lim [[[R(z2) — R(#1)]1(80 — 1(0,90))[I* = 0.
1H—1

It follows then that ||[R(z2) — R(#1)](S0 — 7(0,90) |< 2M[[| 9o [|+14(0,30)[|]] € L*(Q,RY).

According to Lebesgue dominated convergence theorem (LDCT) we obtain lim J; = 0.
1~

By assumption (A4), it follows that
Jo = 5B[|h(t2, 9(t2) — h(t1, 8()I> »> Oas ty — 1.

Moreover,
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Js < 108] | 'Rt = 9) =Rty = )F (. plas, 8G0)du ) s

+ 10E|| j R(tz—s)F( I p(u,9(ﬂ))du)ds||2
= J31 + J3.

By (A2), and Holder’s inequality, it is easy to validate that

Ja < 10B H [ "(R(t2 — 5) ~ R(t) - s))F(s,jS p(u,sw))du)ds

<L2<1+L2b2<1+||9||5>>_‘. IR(t> —5) — R(t1 — )| 2ds — 0,

t1r—t

and

I 108 [ IR = )F(s. ] plus 9)dn ) 2ds

IA

1MLt = 10) [+ B pa, 90 dal)ds

IOM2Le(tz — 1) (1 + L26(1+ 9112, ) )ds

IA

-0 as t - t.
For J, , it is obvious that
1y
Ja < 10E||I0 (R(t2 = 5) = R(t1 = $))g(s)dZg(s) || *
+ 10B|| j R(t2 — 5)g(s)dZB(s)]|2
= Ja1 + 2.
Application, moreover, of Lemma 1leads to

T < 10m(E [V IR = 5) = R(t1 - 9)g5) 12

IA

IA

10m(HE IRz =) = Retr = 9112126 Pyl
Combing this with the norm continuity of R(¢#) and Lebesgue dominated convergence theorem, we

have J41 - Oast; - 1.
In a similar way, one can obtain

Ja

IA

[ ;2 R(12 - 5)g(s)dZ(s)

IA

t
10m(E)(E2 = )M [ 165) 3y s = 0.
1 th—

Now we may write
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Js < 10E]| j (R(t2 - 5) — R(11,5))Culy(s)ds|| > + 10E]| j R(12,5)Cubj(s)ds|| 2
= Js1 +Js.
Combine then Lemma 1, with (A1)-(A4), to write
Efuf(s)1* < SKL[E[S1]1 + SE[R(B)[S0 — h(0, 30) [I+5E| (b, 3(b)) |12
+ 5B [ R - 9)F (5] plu9G0)du )|
+3B [ R(b - )8()aZ4(5) | |
< SKE[E[91]* + M?E| 30 — 1(0,90) ||
+ L1+ sup BISOI) +LebM*(1+b(1 + sup B 9(:)])

+m(H)b2H lej ||g(S)||£°(KX) :| = K.

(A1)-(AS5), Holder inequality and the norm continuity of R(#), we obtain

1 2
Jsi = 10]@”] R(t> — 5) - R(t1 — 5)Cu(s)ds
0
13
< 10K2 j B R(t> — s) — R(11 — s)u(s) || 2ds
0
1 t
< 102 [ 'IR(t2 = ) = R(t1 =9)|1%ds | Bllu(s)|*ds
0 0
~ 0.
h—1

In a similar way, we have

1) 2
Js < IOEH j R(t> — 5)Cu(s)ds
t
1[2
< 10K2E [ " IR(t2 - )u(s) | ds
1y
2 L
< 10K M (11— 1) | EJu(s) | %ds
1y
< IOKCMzKu(l‘z - 1‘1)2
— 0.
h—1
Hence, lim E|[(®93)(t2) — (@93)(#1)]|? = 0, which implies that ¢ —» (®93)() is continuous on [0, 5] in
135l %)
the £2(Q, X)-sense. [ |

Theorem 3.2. Let assumptions (A1) - (A5) be satisfied. Then the system (1) is controllable on [0, b].

proof. From the definition of @, it is easy to show that (®3)(b) = 9:; which means that the control
u¥ steers system (1) from the initial state 3y to the preassigned state 9, at time b. In that follows, we
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shall show that the operator @ has a fixed point in £, which is then a mild solution of system (1),
and the system is controllable. For the sake of simplicity, we shall subdivide our proof into two

steps.
Stepl: ©(Ey) < &p. Let 3 € &,. Then for any ¢ € [0,b], we have
D(Ep) < Ep. Let 3 € &p. Then for any ¢ € [0,b], we have

E|[(@3)(#)|? < 6E|R(#)I0||? + 6E||R()A(0,3)]>
+ 6B At 9())|2 + 6E‘

2 t
+ 6[E + 6[E H I R(z — 5)Cu(s)ds
0

t
[ R s)gazis)
< 6M2E|| 9|2 + 6M2E | h(0, 90)[|2 + 6L, (1 + B[ 9()]|%)
+ 6M2Leb(1 +b(1 + sup E[9()]))
t€[0,b]
t
2 2H-1 2 22
+ 6MZm(H)p! | 11813 + MK
< OM?E( 9o 1* + 6M>Ly(1 + E[|0l?) + 6Li(1 + E[I3(D)I?)
+ 6M2Lib(1 + b(1 + sup BJIS()[))
s€[0,b]

+ 6M2m(H) lg(0) 13 e x, + EM?KEKb,

which implies that B[ (99)(2) |2, < .
Step2: @ is a contraction mapping in .
Lety,z € £, we obtain for any fixed ¢ € [0, 5],

BI@y)®) - @O < 3EN¥0) - he, 20
+38|| [ Re= 9P (5[ psy()dn)

~F(s. ]ty ias |

3R H [ ; R(7 - 5)Cluy (s) — us(s)]ds

k=1
By (A2), (A3) and applying Holder’s inequality, we obtain the following estimates
A1 = E|hty(0) —h(t,z®)]?
< LiE|ly(®) - z® |

< Lilly - |2,

j; R(t - 5) [F(tjo p(v,y(v))dv) - F(tjo p(v,z(v))dv) }ds

t s 2
<3Le [ IRC- 9B [ [p0.y®) - p.20))dv | "ds

2

A2=3]E‘

[ Ra=)F(s.[ plu8Go)dn )ds

2 3
=3 A

(10)



Controllability Result for Neutral SID Evolution Equations Driven by a Rosenblatt Process

< 3LebM? [ Bllp(v,y(0) - pv.2(0)|*dv
< 3°M’LrLy sup Blly(s) -~ z(s)%,
s€[0,b]

and
As = 3B [ RG ~ $)Cluy(s) ~ () 1ds ||
< 3M?HKZE |Juy(s) — uy(s) |12

According to the inequalities obtained above, we obtain the following relation:
B[ [u§(s) —ui(s)[|*] < 2KT B[ A(b,y(b)) — h(b,z(b)]|?
+ 225 [ RG -9 F(5 ] ptuy)dn)
= F(s.J ptuztudu) || ds
< 2L,K? sup Elly(s) — z(s)||?

se[0.0]
+2LpK2 M2L,b* sup Blly(s) — z(s)| %
s€[0,b]

By combining the estimates of Ak, £ = 1,2,3, one has

Ell(®y)(1) - (@2)(0)[|* < 3L;E[ly() —z())|?
+3b*M2LrL, sup Elly(s) — z(s)||?
se[0,5]

+3bM2K2E |luy(s) — u,(s)]|>.

Hence,

Ell(@y)®) - (@) [* < () VSE(J)%]EIIY(S) - 2(s)I?

where,

y(b) = 3(Ly + B2 M2L£L b2 + BM2K2K2 (L, + b*M?LrL,).

61

(11)

Consideration of condition (ii) in (A4) leads to y(0) = 3L, < 1. Then there exists 0 < b; < b such
that 0 < y(b1) < 1 and @ is a contractive mapping on &. Thus, by repeating the procedure, one can
extend the solution to the interval [0,b], that is, the stochastic system (1) is completely

controllable.

4. lllustrative Example

As an application, we consider the following neutral stochastic integrodiffrential equation, driven

by a Rosenblatt process :



62 E. KPIZIM, O. NDIAYE, H. HMOYED, and M. A. DIOP

-
0 z(t,x) _| 8 z(t,x) P
a—t|:z(t,x) T TG :| |: 322 (z(t x) — Ta200) ) ) + ala(z(t,x)
z(t,x) z(2,x)
1+z(tx)) (z(tx)— 1+z(tx)):|
s z(t,x)
+I0ﬁe 7 )|: (z(tx)— 1+z(tx))
S (%) 2(t.x) (12)
+a1 (Z(l )—m) +a2(Z(l‘,X)—m):|dS
H( )
u(,x) +w(z)(j q(s,2(, x)))ds+ for t € [0,5]
and x € [0, 7],
L z(t,0) = z(t,m) = 0, for ¢t € [0,b]; z(0,x) = zo(x),x € [0, 7],

where y : RY - R, aj,a, € R, ZH(s) denotes standard Rosenblatt process defined on a stochastic
basis (Q, F, {Fi}w0.1,P),B>0,u: [0,b] x[0,1] - R.
Let X = U = L%([0, 1]) and define the operator A on X by:

D(A) = H!(0,1) N H{(0, 1)

Aw = 0" +a10' + 0, a1, 0, € R.

From [[17], p. 173] we know that A is infinitesimal generator of an analytic Cy semigroup (T(?)) 0
on X. Then, the semigroup (T(#)) o is norm continuous for 7 > 0.
Let Y(¢) : D(A) € X - X be the operator defined as follows:

Y()¢ = y(1)AE for t >0 and & € D(A).
Define the bounded linear operator C : V - X as
(Cu)(x) = u(®)(x) = u(t,x), t € [0,b],x € [0,1].
In order to rewrite (4.1) in an abstract form in X, we introduce the following notations
3()(&) = z(t,&) fort € [0,b]and & € [0,1],
{ 3(0)(&) = z(0,&) for & € [0,1].

Then we introduce the following operators 4, F,p : [0,b] x X - Xand g : I - £3(Y,X) defined by

__z(tx)
h(t,Z(t,X)) = T(I,x),

(o] p.za)) = wo [ ats,260)ds

p(s,z(t,x)) = q(s,z(t,x))ds,  g(t) = 1, u(t,x) = u()(x).

Using these definitions we can represent the system (12) in the following abstract form
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d[9(1) - h(t,9(0)] = [ A[9() — h(£,9(0)] + [ Y(t = $)[8(s) — h(s, 9(s))]ds
+Cu() + F(1.[ p(s,9())ds ) |de + g(0)dz(0)t < 1 = [0,b] (13)
'9(0) = '907

Moreover, we suppose that y is a bounded and C' function such that y' is bounded and uniformly
continuous, then (H2) is satisfied and hence by Grimmer [19] Eq. (6) has a resolvent operator
(R(#))=0 on X. Finally, by Theorem 2.4 the corresponding resolvent operator is operator-norm
continuous for ¢ > 0.

Now, for x € [0, 1], the operator IL is given by

Lu= J.; R(b — s)u(s,x)ds.

Assume then that IL verifies (A4), thus, it is possible to verify that the assumptions on Theorem 3.2
are fulfilled and hence, the system (1) is controllable on [0, 5].
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