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Abstract. This paper studies the controllability of neutral stochastic integrodifferential evolution
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1. Introduction

Using stochastic differential equations to model dynamic phenomena is helpful when predicting
precisely how the modeled system will behave. Modeling the noises that occur in a variety of fields,
such as financial mathematics, hydrology, medicine, and telecommunications networks can be
performed with stochastic differential equations that are driven by fractional Brownian motion ( see,
for example, 4,6,23 and the references therein). Moreover, the Rosenblatt process is a helpful tool
when the Gaussianity property of the model does not make sense when dealing with data that does
not fit a normal distribution. As is well-known, the Rosenblatt process is non-Gaussian with many
exciting properties, such as stationarity of the increments, long-range dependence, and
self-similarity. There exists consistent literature that focuses on different theoretical aspects of the
Rosenblatt processes. In the past ten years, it has undergone substantial development; for example,
see the papers 9,38  40 in which the numerous properties of the Rosenblatt process are examined
and detailed. Because of this, it would be interesting to research a new class of fractional stochastic
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differential equations driven by the Rosenblatt process. We want to direct the reader to the extensive
work in 1,3,9  11,13,16, 18,25, 28,29,33, 34,42 and 5 and references listed in those sources for
additional information. Recent research carried out by Shen et al. [35] established the existence and
uniqueness of a mild solution for a neutral stochastic partial differential equation with a finite delay
driven by the Rosenblatt process in a real separable Hilbert space. Shen et al. [36] investigated the
controllability and exponential stability in the pth moment for stochastic differential systems driven
by the Rosenblatt process. Sakthivel et al. [32] used fixed point theory to investigate the existence
results for retarded SDEs with infinite delay driven by the Rosenblatt process. Caraballo et al. [6]
investigated the existence and uniqueness of a mild solution for an impulsive stochastic system
driven by a Rosenblatt process. They did this using the Banach fixed point theorem and the theory of
resolvent operators developed by R. Grimmer in [19]. Also, they got exponential stability in the
mean square for the mild solutions by using an integral inequality.

Controllability is one of the most essential and fundamental concepts in mathematical control
theory. Both deterministic and stochastic systems stand to gain a great deal from their presence and
application (for additional details, see [2, 41] and the references there in). The study of
controllability of stochastic partial differential equations is one of the topics that researchers are
currently focusing on. We refer the reader to [8, 20, 23].

Our main goal in this study is to look into the controllability of nonlinear neutral evolution
equations, driven by the Rosenblatt process, of following form.

dt  ht,t  At  ht,t  
0

t
t  ss  hs,s ds

Cut  F t, 
0

t
s,sds dt  gt dZQ

Ht, t  I  0,b,

0  0,

1

where the state  takes values in a separable real Hilbert space X with inner product , ,
A : DA  X  X is the infinitesimal generator of a C0-semigroup Ttt0 with domain DA,
t is a closed linear operator on X with domain Dt  DA which is independent of t. The
control function u takes values in 2I,U, the Hilbert space of admissible control functions for a
separable Hilbert space U. C is a bounded linear operator from U into X. F : I  X  X;
h : I  X  X;  : I  X  X and g : I  2

0 ,X are appropriate functions to be specified later,
ZH is a Rosenblatt process in real separable Hilbert spaces with Hurst parameter H   1

2 , 1.
In [19], R. Grimmer considered the following integrodifferential equation:

 t  At  
0

t
t  ssds  t for t  0

0  0  ,
2

where, is a Banach space and  :   is a continuous function. The author was able to get
some results about the existence, regularity, and asymptotic behavior of solutions to the equation (2)
by using resolvent operator theory. These findings are presented in the form of a variation constant of
formula. Note that in [12], the authors discussed via -norm the controllability results of (1) with
  0, and the presence of fractional Brownian motion. In this study, we ignore these two
assumptions and instead make the assumption that the linear component possesses a resolvent
operator in the sense that it is described by Grimmer and that the system is driven by a Rosenblatt
process.

The contributions made by this manuscript fall into the following categories:
 The formulation of nonlinear stochastic functional integrodifferential control system with the
Rosenblatt process incorporated.
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 The resolvent operator theory, in the sense of Grimmer, is utilized, together with the Grammian, for
the purpose of achieving sufficient conditions in a stochastic setting and to ensure that the system (1)
is controllable.
 An example is given to show the findings of the theoretical analysis that was carried out.
The following is the paper’s structure: In the second section, we will review some fundamental ideas
about integrodifferential equations in Banach spaces and the Rosenblatt process. In Section 3, we
investigate the controllability of the stochastic system (1). Finally, we provide a working example
that illustrates the proposed theory in this paper.

2. Preliminaries

In this section, we present some basic concepts, definitions, and lemmas that are required to
obtain the results. Throughout this paper, it is assumed that 1

2
 H  1 and let , ,  be a

complete probability space and for t  0, t denote the -field generated by ZHts, s  0, t
and the -null sets. Let X be a separable Hilbert space with inner product ,  and norm   . The
collection of all strongly measurable, square integrable X- valued random variables denoted by

2, , ,X  2,X stands for the space of all X-valued random variables such that
 2  


 2 d  . Let  ,X denotes the space of all bounded linear operators

from to X and Q   ,  represents a non-negative self-adjoint operator. Let Q
0  ,Xbe the

space of all functions  2 ,X such that Q1/2 is a Hilbert-Schmidt operator. The norm is given
by   

Q
0

2   Q1/2 2  TrQ and  is called a Q-Hilbert-Schmidt operator from to

X.

2.1. Rosenblatt process

Let 0,b denote a time interval with arbitrary fixed horizon b and let ZHt, t  0,b be a
one-dimensional Rosenblatt process with parameter H   1

2 , 1. Now, the Rosenblatt process with
parameter H  1

2 can be written as [40]

ZHt  dH 
0

t 
0

t 
y1y2

t KH

u
u,y1 K

H

u
u,y2du dBy1dBy2, 3

where KHt, s is given by

KHt, s  mHs
1
2
H 

s

t
u  sH3/2uH1/2du for t  s,

with

mH 
H2H  1

2  2H,H  1
2 

,

,  denotes the Beta function, KHt, s  0 when t  s, Bt, t  0,b is a Brownian motion,
H  H1

2 and dH  1
H1

H
22H1 is a normalizing constant. The covariance of the Rosenblatt

process ZHt, t  0,b is
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ZHtZHs  1
2
s2H  t2H  s  t 2H .

The covariance structure of the Rosenblatt process allows to construct Wiener integral with respect
to it. We refer to Maejima and Tudor [27] for the definition of Wiener integral with respect to
general Hermite processes and to Kruk, Russo, and Tudor [31] for a more general context (see also
Tudor [40]).

Notice that

ZHt  
0

b 
0

b
10,ty1,y2dBy1dBy2,

where the operator is defined on the set of functions : 0,b  , which takes its values in the
set of functions : 0,b2  2 and is given by

 y1,y2  dH 
y1y2

b
u K

H

u
u,y1 K

H

u
u,y2du.

Let be an element of the set of step functions on 0,b of the form

 
i0

n1

ai1t i,t i1, t i  0,b.

Then, it is natural to define its Wiener integral with respect to ZH as


0

b
udZHu : 

i0

n1

aiZHt i1  ZHt i  
0

b 
0

b
 y1,y2dBy1dBy2.

Let be the set of functions such that

 2 : 2 
0

b 
0

b
  y1,y22dy1dy2  .

It follows from [40] that

 2  H2H  1 
0

b 
0

b
u v  u  v 2H2 dudv,

and it has been proved in [27] that the mapping

 
0

b
udZHu

defines an isometry from to 2. Because is dense in , it can be extended continuously to an
isometry from to 2 . We call this extension as the Wiener integral of  with respect to
ZH. It is noted that the space contains not only functions but its elements could be also
distributions. Therefore it is suitable to identify subspaces   of :
  : 0,b   

0

b 
0

b
 u  v  u  v 2H2 dudv   . The space   is

not complete with respect to the norm  but it is a Banach space with respect to the norm

  
2  H2H  1 

0

b 
0

b
 u  v  u  v 2H2 dudv.
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As a consequence, we have

20,b  1/H0,b   .

For any  20,b, we have

  
2  2Hb2H1 

0

b
 s 2 ds

and

  
2  mH  1/H0,b

2 , 4

for some constant mH  0. Let mH  0 stands for a positive constant depending only on and
its value may be different in different settings.
Define the linear operator KH

 from to 20,b by

KH
 y1,y2  

y1y2

b
t 

t
t,y1,y2dt,

where is the kernel of Rosenblatt process in representation (3)

t,y1,y2  10,ty110,ty2 
y1y2

t KH

u
u,y1 K

H

u
u,y2du.

Note that KH
 10,ty1,y2  t,y1,y210,ty110,ty2. The operator KH

 is an isometry between

to 20,b, which can be extended to the Hilbert space . In fact, for any s, t  0,b we have

KH
 10,t,KH

 10,s  20,b   t, , 10,t, s, , 10,s  20,b

 
0

ts 
0

ts
t,y1,y2 s,y1,y2dy1dy2

 H2H  1 
0

t 
0

s
 u  v 2H2 dudv

 10,t, 10,s  .

Further to this , for  , we have

ZH   
0

b 
0

b
KH

 y1,y2dBy1dBy2.

Let zntn be a sequence of two-sided one dimensional Rosenblatt process mutually independent
on , , . Consider then a -valued stochastic process ZQt given by the following series:

ZQt  
n1



zntQ1/2en, t  0.

Moreover, if Q is a non-negative self-adjoint trace class operator, then this series converges in the
space , that is, it holds that ZQt  2, . Then, we say that the above ZQt is a -valued Q-
Rosenblatt process with covariance operator Q. For instance, if nn is a bounded sequence of
non-negative real numbers such that Qen  nen, by assuming that Q is a nuclear operator in , then
the stochastic process
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ZQt  
n1



zntQ1/2en  
n1



n znten, t  0,

is well-defined as a -valued Q- Rosenblatt process.

Definition 2.1 [40]. Let  : 0,b  Q
0  , X such that n1

 KH
 Q1/2en 20,b;X  . Then,

its stochastic integral with respect to the Rosenblatt process ZQt is defined, for t  0, as follows :


0

t
sdZQs :



n1

 
0

t
sQ1/2endzns




n1

 
0

t 
0

t
KH

 Q1/2eny1,y2dBy1dBy2.
5

Lemma 2.1 [37]. For  : 0,b  Q
0  ,X such that n1

 Q1/2en 1/H0,b;X   holds, and for
any ,  0,b with   , we have





sdZQs

2

 mH  2H1
n1







sQ1/2en2ds.

If, in addition,


n1



tQ1/2en is uniformly convergent for t  0,b,

then, it holds that





sdZQs

2

 mH  2H1 



s

Q
0  ,X

2 ds.

2.2. Integrodifferential equations in Banach spaces

Let and be two Banach spaces such that   A,   . A and t are closed
linear operators on . Let  , ,  ,  stand for the space of all continuous functions from 

into , the set of all bounded linear operators from into , respectively. In what follows, we
suppose the following assumptions:
(H1) A is the infinitesimal generator of a strongly continuous semigroup Ttt0 on .
(H2) For all t  0, t is a closed linear operator from DA to , and t   , . For any
  , the map t  t is bounded, differentiable and the derivative t  t  is bounded
uniformly continuous on .

According to Grimmer [19], under the assumptions (H1) and (H2), the following Cauchy
problem

 t  At  
0

t
t  ssds for t  0

0  0  ,
6

has an associated resolvent operator of bounded linear operator valued function Rt   , for
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t  0.

Definition 2.2 [19]. A bounded linear operator valued function Rt   , for t  0, is referred to
be a resolvent operator associated with (6) if :
(i) R0  I and Rt   Met for some constants M and .
(ii) For all each m  , Rtm is strongly continuous for t  0.
(iii) Rt    for t  0. For m  , R  10,,   0,,  and

R

tm  ARtm  

0

t
t  sRsmds,

 RtAm  
0

t
Rt  ssmds, t  0.

Now, we present some results on the existence of solutions for the following integrodifferential
equation:

 t  At  
0

t
t  ssds  t for t  0

0  0  ,
7

where  :   is a continuous function.

Definition 2.3. A continuous function  : 0, is said to be a strict solution for equation (7) if
1.   1 ,    , ,
2.  satisfies equation (7) for t  0.

Remark 2.1. From this definition, we deduce that t  DA, and the function s  t  ss is
integrable, for all t  0 and s  0.

Theorem 2.2 [19]. Suppose that hypotheses (H1) and (H2) hold. If  is a strict solution of (7), then
the following variation of constants formula holds.

t  Rt0  
0

t
Rt  ssds, for t  0. 8

Consequently, we can establish the following definition.

Definition 2.4 [19]. A function  :   is called a mild solution of (7) for 0  , if  satisfies
the variation of constants formula (8).

Theorem 2.3[19]. Let   C10,;Y and  be defined by (8). If 0  DA, then  is a strict
solution for equation (7).

Theorem 2.4 [22]. Assume that H1  H2 hold. Then, the resolvent operator Rtt0 for
equation (6) is operator-norm continuous(or continuous in the uniform operator topology) for t  0
if and only if Ttt0 is operator-norm continuous for t  0.

Throughout this paper, let M : supRt: 0  t  b. Denote then the space of all
continuous t-adapted measurable processes from 0,b to 2,X satisfying

t0,b
sup t2  

by 0,b, 2,X.
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Let b : 0,b, 2,X. The space b equipped with the norm  b  supt0,b t2
1
2

is a Banach space.

Definition 2.5. An t-adapted processes t is called a mild solution of system (1.1) if for all t
 I,t satisfies:

t  Rt0  h0,0  ht,t  
0

t
Rt  s Cus  F s, 

0

s
,d ds

 
0

t
Rt  sgtdZQ

Hs,
9

where Rtt0 denotes the resolvent operator of the linear part of (1).

Definition 2.6. The system (1) is said to be controllable on the interval 0,b, if for every initial
value 0  X, there exists a control function u  20,b,U such that the mild solution t of (1)
satisfies b  1, where 1 is a preassigned terminal state.

3. Controllability Results

The controllability results are derived in this section. We start by introducing the following
assumptions:
(A1) The semigroup Ttt0 is norm-continuous for t  0.
(A2) The functions F : 0, b  X  X satisfy the following Lipschitz conditions: that is, there is
constant LF  0 such that, for any 1,2  X and t  0, b,

Ft,1  Ft,22  LF1  22,Ft,12  LF1  12

For the function  : 0, b  X  X, there exists a constant L  0 such that

t,1  t,22  L1  22,t,12  L1  12.

(A3) g  2
0 ,X with

n1



 gQ1/2en
2
0 ,X  .

(A4) The function h : I  X  X is satisfy the following conditions:
(i) h is continuous in the following sense:

lim
ts

ht,t  hs,s2  0;

(ii) For any 1,2  X, t  0, b,

ht,1  ht,22  Lh 1  22, ht,12  Lh1  2,

and Lh  1
3 .

(A5) The linear operator from 2I,U to X defined by

u  
0

b
Rb  sCusds,

has an inverse operator 1 that takes values in 2I,U\ ker see [7] and there exists finite positive
constants K ,Kc such that C Kc and  1 K .
Now, by using assumption A5, for an arbitrary function , we can introduce the following
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control:

u
b t  11  Rb0  h0,0  hb,b

 
0

b
Rb  sF s, 

0

s
,d ds

 
0

b
Rb  sgsdZQ

Hs t.

Define then the operator  : b  b by

t  Rt0  h0,0  ht,t  
0

t
Rt  sCu

b s

 F s, 
0

s
,d ds

 
0

t
Rt  sgsdZQ

Hs.

Lemma 3.1. Assume that A1  A4 hold. For every   Eb, t  t is continuous on 0, b
in L2,X-sense.

Proof. For any   b, 0  t1  t2  b, we have

t2  t12

 5 Rt2  Rt10  h0,02  5 ht2,t2  ht1,t12

 5 
0

t2
Rt2  sFs,,dds

 
0

t1
Rt1  sF s,

0

s
,d ds2

 5 
0

t2
Rt2  sgsdZQ

Hs  
0

t1
Rt1  sgsdZQ

Hs2

 5 
0

t2
Rt2  sCusds  

0

t1
Rt1  sCusds2

: J1  J2  J3  J4  J5.

Now, we only need to check that J1, J2, J3, J4 andJ5 tends to 0 independently of   b when
t1  t2.

By the strong continuity of Rt we have

t2t1
lim Rt2  Rt10  h0,02  0.

It follows then that Rt2  Rt10  h0,0 2M0h0,0  L2, .
According to Lebesgue dominated convergence theorem (LDCT) we obtain

t2t1
lim J1  0.

By assumption (A4), it follows that

J2  5 ht2,t2  ht1,t12  0 as t1  t2.

Moreover,
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J3  10 
0

t1
Rt2  s  Rt1  sF s,

0

s
,d ds2

 10 
t1

t2
Rt2  sF s,

0

s
,d ds2

: J31  J32.

By (A2), and Hölder’s inequality, it is easy to validate that

J31  10 
0

t1
Rt2  s  Rt1  sF s,

0

s
,d ds

2

 LF
2 1  L2b2 1  

b

2 
0

t1
Rt2  s  Rt1  s2ds

t2t1
 0,

and

J32  10 
t1

t2
Rt2  sF s,

0

s
,d 2ds

 10M2LFt2  t1 
t1

t2
1  

0

s
,d2ds

 10M2LFt2  t121  L2b2 1  
b

2 ds

 0 as t1  t2.

For J4 , it is obvious that

J4  10 
0

t1
Rt2  s  Rt1  sgsdZQ

Hs2

 10 
t1

t2
Rt2  sgsdZQ

Hs2

: J41  J42.

Application, moreover, of Lemma 1leads to

J41  10mHb2H1 
0

t1
Rt2  s  Rt1  sgs2ds

 10mHb2H1 
0

t1
Rt2  s  Rt1  s2gs

Q
0  ,X

2 ds .

Combing this with the norm continuity of Rt and Lebesgue dominated convergence theorem, we
have J41  0 as t1  t2.
In a similar way, one can obtain

J42  10 
t1

t2
Rt2  sgsdZQ

Hs
2

 10mHt2  t12H1M2 
t1

t2
gs

Q
0  ,X

2 ds
t2t1
 0.

Now we may write
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J5  10 
0

t1
Rt2  s  Rt1, sCu

b sds2  10 
t1

t2
Rt2, sCu

b sds2

 J51  J52.

Combine then Lemma 1, with (A1)-(A4), to write

u
b s2  5K2  12  5 Rb0  h0,05 hb,b2

 5 
0

b
Rb  sF s,

0

s
,d ds2

5 
0

b
Rb  sgsdZQ

Hs2

 5K2  12 M2 0  h0,0

 Lh1  sup
t0,b

t  LFbM21  b1  sup
s0,b

s

mHb2H1M2 
0

b
gs

Q
0  ,X

2 ds : Ku.

(A1)-(A5), Hölder inequality and the norm continuity of Rt, we obtain

J51  10 
0

t1
Rt2  s  Rt1  sCusds

2

 10Kc
2 

0

t1
Rt2  s  Rt1  sus2ds

 10Kc
2 

0

t1
Rt2  s  Rt1  s2ds 

0

t1
us2ds

t2t1
 0.

In a similar way, we have

J52  10 
t1

t2
Rt2  sCusds

2

 10Kc
2 

t1

t2
Rt2  sus2ds

 10KcM2t1  t2 
t1

t2
us2ds

 10KcM2Kut2  t12

t2t1
 0.

Hence,
t1t2
lim t2  t12  0, which implies that t  t is continuous on 0,b in

the 2,X-sense. 

Theorem 3.2. Let assumptions (A1) - (A5) be satisfied. Then the system (1) is controllable on 0,b.

proof. From the definition of , it is easy to show that b  1; which means that the control
u
b steers system (1) from the initial state 0 to the preassigned state 1 at time b. In that follows, we
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shall show that the operator  has a fixed point in b, which is then a mild solution of system 1,
and the system is controllable. For the sake of simplicity, we shall subdivide our proof into two
steps.
Step1:  b  b. Let   b. Then for any t  0,b, we have
 b  b. Let   b. Then for any t  0,b, we have

t2  6 Rt02  6 Rth0,02

 6 ht,t2  6 
0

t
Rt  sF s,

0

s
,d ds

2

 6 
0

t
Rt  sgsdZQ

Hs
2

 6 
0

t
Rt  sCusds

2

 6M2 02  6M2 h0,02  6Lh1  t2

 6M2LFb1  b1  sup
t0,b

t

 6M2mHb2H1 
0

t
gs

Q
0  ,X

2  6M2Kc
2Kub

 6M2 02  6M2Lh1  02  6Lh1  t2

 6M2LFb1  b1  sup
s0,b

s

 6M2mHgt
Q
0  ,X

2  6M2Ku
2Kub,

which implies that t b
2  .

Step2:  is a contraction mapping in b.
Let y, z  b we obtain for any fixed t  0,b,

yt  zt2  3 ht, yt  ht, zt2

 3 
0

t
Rt  sF s,

0

s
, yd

 F s,
0

s
, zd ds

2

 3 
0

t
Rt  sCuys  uzsds

2

 3

k1

3

 k.

By A2, A3 and applying Hölder’s inequality, we obtain the following estimates

1  ht, yt  ht, zt2

 Lh yt  zt2

 Lhy  z b
2 , 10

2  3 
0

t
Rt  s F t,

0

s
, yd  F t,

0

s
, zd ds

2

 3LF 
0

t
Rt  s2 

0

s
, y  , zd

2

ds
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 3LFbM2 
0

s
, y  , z2d

 3b2M2LFL sup
s0,b

ys  zs2,

and

3  3 
0

t
Rt  sCuys  uzsds

2

 3M2bKc
2 uys  uzs2 11

According to the inequalities obtained above, we obtain the following relation:
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By combining the estimates of k, k  1,2,3, one has
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Hence,
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where,

b  3Lh  b2M2LFLb2  bM2Kc
2K2 Lh  b4M2LFL.

Consideration of condition (ii) in (A4) leads to 0  3Lh  1. Then there exists 0  b1  b such
that 0  b1  1 and  is a contractive mapping on b. Thus, by repeating the procedure, one can
extend the solution to the interval 0,b, that is, the stochastic system (1) is completely
controllable. 

4. Illustrative Example

As an application, we consider the following neutral stochastic integrodiffrential equation, driven
by a Rosenblatt process :
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where  :   , 1,2  , ZHs denotes standard Rosenblatt process defined on a stochastic
basis , , tt0,1, , B  0,  : 0,b  0,1  .

Let X  U  L20,1 and define the operator A on X by:

DA  H10,1  H0
10,1

A    1  2, 1, 2  .

From [[17], p. 173] we know that A is infinitesimal generator of an analytic C0 semigroup Ttt0
on X. Then, the semigroup Ttt0 is norm continuous for t  0.

Let t : DA  X  X be the operator defined as follows:

t  tA for t  0 and   DA.

Define the bounded linear operator :   as

 ux : utx  t,x, t  0,b,x  0,1.

In order to rewrite (4.1) in an abstract form in X, we introduce the following notations

t  zt, for t  0,band   0,1,

0  z0, for   0,1.

Then we introduce the following operators h,F, : 0,b  X  X and g : I  2
0 ,X defined by
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,

F t,
0

t
s, zt,x  wt 

0

t
qs, zt,xds,
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Using these definitions we can represent the system (12) in the following abstract form
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Moreover, we suppose that  is a bounded and 1 function such that   is bounded and uniformly
continuous, then (H2) is satisfied and hence by Grimmer 19 Eq. (6) has a resolvent operator
Rtt0 on X. Finally, by Theorem 2.4 the corresponding resolvent operator is operator-norm
continuous for t  0.
Now, for x  0,1, the operator is given by

u  
0

1
Rb  sus,xds.

Assume then that verifies A4, thus, it is possible to verify that the assumptions on Theorem 3.2
are fulfilled and hence, the system (1) is controllable on 0,b.
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