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Abstract. This paper is devoted to the solution of a multidimensional backward doubly stochastic
differential equation with jumps. Existence and uniqueness of the solution to this equation is proved
by using stochastic analysis, assuming non-Lipschitz conditions for the coefficients, and via
construction of an appropriate approximation sequence.
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1. Introduction

Backward stochastic differential equations (BSDEs) have originally been introduced by Pardoux
and Peng in [6]. After that, in order to give a probabilistic representation for a class of quasilinear
stochastic partial differential equations, they introduced in [7] a new class of BSDEs driven by two
Brownian motions called backward doubly stochastic differential equations (BDSDEs in short).
They have also proved the existence and uniqueness of solution under uniformly Lipschitzian
conditions and gave probabilistic interpretation for the solutions of a class of semilinear stochastic
partial differential equations (SPDEs in short) where the coefficients are smooth enough.

Taking into account the previous results of Pardoux and Peng, several works have attempted to
relax the Lipschitz condition and the growth of the generator function. For instance, Bahlali et al.
established in [3] the existence and uniqueness of a solution for the BDSDE with superlinear growth
generators. Furthermore, Z.Wu and F. Zhang [10] obtained an existence and uniqueness result for
BDSDESs under locally monotone assumptions.

Recently, papers on BDSDEs with jumps started to appear in the literature. For instance, Zhu and
Shi [11] studied BDSDEs driven by Brownian motion and for a Poisson process with non-Lipschitz
coefficients on a random time interval. Aman [2], Aman with Owo [1], and Ren et al. [8] studied a
special reflected generalized BDSDEs (driven by Teugel’s martingales associated with Lévy process)

38



39 D. NDIAYE, Y. SAGNA, and S. AIDARA

with means of the penalization method and the fixed-point theorem. Existence and uniqueness of the
solution to the BDSDE with jumps, in the forward integral, have been studied by Sow in [9] for the
case of non-Lipschitz coefficients.

Inspired by the work of Sow [9], we consider here multidimensional BDSDEs with Poisson jumps
(BDSDEP in short) under non-Lipschitz coefficients. Thus, this work can be seen as an extension of
[9].

Our paper is organized as follows: in Section 2 we give some definitions and preliminary results.
Using these statements we prove existence and uniqueness of the solution of BDSDEP in Section 3.

2. Definitions and Preliminary Results

Let Q be a non-empty set, F a o —algebra of subsets of Q and P a probability measure defined on
F . The triple (QQ,F, P) defines a probability space, which is assumed to be complete. We assume
given three mutually independent processes :
e a d —dimensional Brownian motion (W;) o,
e | —dimensional Brownian motion (B;) o,
e a random Poisson measure p on E x R, with compensator v(dt,de) = A(de)dt, where the space
E = R"\ {0} is equipped with its Borel field £ such that

{a([0,] x4) = (u-v)[0,1] x 4}

is a martingale for any 4 € & satisfying A(4) < . A is a o —finite measure on £ and satisfies
[ (1 AlePAde) < .
E

Let 0 < T < +o be a non-random horizon time. We consider the family (F ;) <<r given by
Fi=F/VFIVFI, 0<t<T,

where for any process {n;} =0, Fi; = o{n,—ns, s<r<ty VN, F{ = F(, Here N denotes the
class of P —null sets of & and we assume that Fr = F. Note that the family (F,)o<<r does not
constitute a classical filtration.

For an integer O > 1, | . | and (.) stand for the Euclidian norm and the inner product in R€.
Moreover, for every random process (a(t))o with positive values, such that a(¢) is F ,-measurable
for any ¢>0, we define an increasing process (A(f))=0 by setting A(¢) = I; a’(s)ds.
Then for every B > 0, we consider the following sets (where E denotes the mathematical expectation
with respect to the probability measure P):

. Efoﬂ(RQ) the space of F, —adapted cadlag processes

Y. [0, T] x Q — RQ, ||\P||2£2(RQ) = E(sup eﬂA(’)|‘P,|2) < +0o0.
0<t<T

e M3, 1(R9) and M’ (R2) the space of &, —progressively measurable processes
WY : [0,7] x Q — R€ and which satisfy respectively
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T
||‘P||ﬁAz(RQ) = E(IO ePAO | 2 dz) < +oo,
T
0¥ ey = B(] 0@ ) < 4
e L2(B,2,[0,T],R?) the space of mappings U : Q x [0, 7] x E — R€ which are
P ® E-measurable s.t.
2 o =E([ [ em0 2)(de)d
1Ul e, = E( [ | POl 2de)dr ) < +on,
where P ® £ denotes the o —algebra of &, —predictable sets of Q x [0, 77.
Notice that the space
A%O,T] (ﬁsasRQ) = M%(’)[,IT] (RQ) X M[20,T](RQXd) X Ez(ﬁs )‘: [05 T]sRQ)
endowed with the norm
1(Y,Z,U) ”342(RQ) = ”aY”i/IZ,a(RQ) + ”Z”i/(Z(RQxd) + Ul p2ro)
is a Banach space as is the space
Bf.n(B.a,R%) = (M5 (RE) N LF n(RE)) x My n(RE) x L2(B,2,[0,T],R)
with the norm
”(YaZa U) ||ig2(RQ) = “Y”y(RQ) + ”aY”i/tla(RQ) + ”Z”f\/ﬂ(RQxd) + “ U||2£2(RQ)~

Let f:Qx[0,7]xRfxRF xRF 5 RF, g : Qx[0,T]xRF xRFIxRF - RP and & a
R¥ —valued random vector, we are interested in the BDSDEP with parameters (&, f, g, T):

T T T
V=g Ar.0,)dr + jt ¢(r.©,)dB, - | "zaw,

_ jTjE U(e)i(dr.de), 0<t<T, (1)

where ©, stands for the triple (Y,,Z,,U,).
Now, let us update the notion of solution to Eq.(1).

Definition 2.1. A triple of processes (Y, Z,U;)o<<r 1s called a solution to Eq.(1), if
(Y1, Z,Uy) € Bfy n(B,a,R¥) and it satisfies Eq.(1).

Then we shall recall the following result which will be useful in the sequel.

Lemma 2.1. Let X € Ljyn(R"),8 € Mfy (R, € Mfy (R, m € Mfy y(R™)  and
¢ € L>(B,A,[0,T],R") be such that

X, = Xo + j; 9,dr + j; ¢,dB, + j; ,dW, + j; jE b,(e)i(dr,de), 0<(<T

Then we have for any B > 0and 0 <t < T,
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@) 2 = 0P +2 [ X 89dr+2 [ (a4 2 [ (XrmdiW,)
0 0 0
+2f 0 | X d()Filde.dr)) - jo|§,|2dr +| rr

[ [ oePaderdr+ 3 ax),

O<r<t

where AX, = X, — X, the size of the left jump of X at r,
T T T
(i) eMOXP+B[ PO+ [ PO Par+ [ [ PO ()P Ade)dr
t t t E

T T
+ 30 eMO(AX,)? = PO +2 [ PN, 9,)dr -2 [ ePOX, 7 W)
t t

t<r<T

T T T
) j j ePAX, b, (e)Ti(de, dr)) +2 j eﬂA<r><X,,g,dB,>+j PAON 2,
t E t t

Proof. The point (i) is an adaptation of the argument developed in Pardoux and Peng [7]. To prove
the second point, we consider the process Z, = e1®|X;|?, 0 <t < T. Applying the integration by
parts formula to (Z;)o<<r, we have

dZ, = AOd(X)?) + (D) AOLX2dt, 0<t<T.

Using (i), (ii) follows by integration.

3. Existence and Uniqueness

Let us introduce the following assumptions. We say that the parameters &,f and g satisfy
assumptions (H), for some f >0 if the following hold (where we define for
0<t<T,h(0) = h(0,0,0), for h € {f,g} to ease the reading).

e (H1): f and g are jointly measurable and four integrable functions {y(?)}, <{9(t)}, <{o(?)},
{v(®)}, [0,7] — R* such that for >0, y(2),3(¢),0(t), and v(f) are F, —measurable and
0.y € (RH?, (z,2) € (R")? and (u,u') € (RF)?,

Jf(tsyszs u) _f(tsylszlsu,”s V(t)P(b’ _y,|) + ‘9(t)|Z - Z,|+G(t)|u - l/l,|,
|g(t,y,z,u) _g(taylaz/au/)|2 < )/(t)[y —)’/|P(b’ _le + U(t)(|Z _Z/|2 + |u - u/|2)a

du
pu)
e (H2): There exists a constant 0 < o < 1 such that v(¢) < a, for all # > 0.

e (H3): Forall 0 < 1 < T, a2(t) = y(2) + 92(t) + 2(2) > 0.

o (H4): £ is a F —measurable random vector, such that E[ef4(D|E|?] < +oo0.

e (H5): For any (t,y,z,u) € [0,7] x R* x R*? x R, f(t,y,z,u) and g(t,y,z,u) are F, —measurable
and the integrability condition holds

where p is a concave and nondecreasing function with p(0) = 0 and .[0+ = +00,

T 2 T
E|:I eﬁA(’)V(’;’—O)'dr+I eﬁA(r)|g(r,0)|2dr:| < oo,
0 a=(r) 0



Multidimensional BDSDEs With Poisson Jumps Under Non-Lipschitz Coefficients 42

We recall the following results, which will be useful in the proof of uniqueness.

Lemma 3.1 (Gronwall). Assume given T>0,K>0 and ®,%¥ :[0,7] > R* such that
T
[ , Y(©)ds < oo If

t
VO<t<T, <K+ j P (5)D(s)ds < oo,
0
then we have

VO<i<T, @) < Kexp( [ ; ‘P(s)ds).

Lemma 3.2 (Bihari’s inequality). Let T > 0, u,v continuous non-negative functions on [0,T] and a
continuous function H € S. If

u(@) < [ VOHW)dr, 0<i<T,
0
thenu(t) = 0 forall0 <t <T.

As in [4], Theorem 1, we consider the sequence (f,,)>1 defined by

I =S f0)

where

Vi=1,...k, flo,ty,z,u) = nf{fi(o,t,v,z,u) + (n+A)y)|v—y|};.

veR

We have the following result, whose proof is omitted since it is an adaptation of step 1 of Theorem 1
in [4].

Lemma 3.3. The sequence of F ; — progressively measurable function [ satisfies:
(i) V(v.z,u) € REx R RE, - |f(a,1,y,2,u) — flo, ty,z.u)|< ky () p(24L)
(i) V(,y') € (RY?, (2,2') € (R™)? and (u,u') € (R")?,

an(wa t,y,Z, u) _fn(wa tay/azlaul)|§ k(l’l +A)[}/(t)(b/ _y/D + '9(1)|Z - Z/|+G(t)|u - U/”,
" (o,t,,z,u) — (0,62, u"]) +k3@)|z - z'|[+ko(t)ju — u'|.

iii) The integrabilty condition holds E T et SO g1 oo,
grabilty o

a?(r)

We also have the following result which is important for the proof of our main result. Its proof
can be seen in [4], Lemma 1.

du  _
p(u)
= 400 moreover

Lemma 3.4. If p(u) is a concave and nondecreasing function with p(0) = 0 and '|.0+ +00

there exists a concave nondecreasing function ¢(u) with ¢(0) = 0 and Io+

aJup(Ju) < ¢(u) < aJup(Ju), where a > 0 is a constant.

du
p(u)
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Proposition 3.1. Assume that assumptions (H1)-(HS) are true and let (Y;,Z;, U,)o<<r be a solution

to the MBSDEP (1). Then for a large enough B, there exists a constant ¢ > 0 depending only on 8
and T such that, for any 0 <t < T,

T T
E(sup eﬂA(’)|Yr|2> +E[ MO, Pdr+E [ 0|7, 2dr
t t

t<r<T

T
+Ej j PAO\U, ()2 A (de)dr
t YE
T ) T
< C(ﬁ,T)[EeﬁA(”MjF +E [ 0L g B [ eM0g(r, 0)dr
t a-\r t

T
+E | P0G P ] @)

Proof. Applying Lemma 2.1, we deduce from (1)
T T T

PO+ B[ MO Y dr+ [ MOz Pdr+ [ PO ()P Ade)dr
t t t YE

T
+Zt<rgeﬂA(r)(AYr)2 = ePADEPR 1 2J't POY, [, ©,)dr
r T
12| MY g(,0,)dB, -2 [ P10V, z,aw,
¢ t

T T
-2 L IE ePAY, U, (e)Ti(dr,de) + Il PMOg(r,@,)2dr, 0<t<T 3)

By the assumptions (H1), (H2) and (H3) and the inequality 2ab < 6a* + b*/0 for any 6 > 0, we
have

2Y.f(r,®,) = 2Y,[f(r,®,) - f(r,Y,,0,0) + f(r,Y,,0,0) — f{r,0) + f(r,0)]
S 2|YV”f(ra®i‘ _f(ra YV7070)|+2|Y"”/(F7 YraO: 0) _f(ra 0)|+2|Y;”]((1", 0)|

< (< + Byl + L1z 1 UL+ (TP + ﬁjzr [f(r,0)|? (4)

g(r,0,) = |g(r,0,) - g(r,0) + g(r,0)|?
< (L+ )@Y, 1») + a(l + Z + U]+ (1 + &)lg(r, 0)]*. (5)
Take expectation on both sides of (3), by (4) and (5), we have

T T
E[M0]Y,P1eP0Y P + (25 + L)E I, PO ()Y, 2dr + (5% — Z)E I, PO, 2dr
T
(56 [ | POuePaderdr
BA(T)| £)2 2 r BA(r) S0 T BA() 2
< E[eMD|P] + 2B I, P10 LB Gr + (1 + ) j[ PO g (7, 0)|2dr

T
=1+ DE[ MO04(Y.P)ar (©)
t
Lete > f_—“a and f be large enough, there exists a nonnegative constant C(S3, T) such that

T T
E[eM0)Y,2]ef0|Y,12 + E j PO G2 ()Y, 2dr + E j POz, 2y
t t

N PO P A < C.T) AT, (7)
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where

T r,0)? T
XT = E[eMD|E2] + E L ePA0) —in k (2)' dr+E L eP0|g(r, 0)|2dr

T
+E [ 0@ ()BT,
t
Futhermore using (3) once again and (7), we have

T T
E<sup eﬂA<r>|Y,|2> +E[ MO Pdr+E [ PO, Pdr
t t

t<I<T

T
+| [ jE ePAO|U.(e)|2 A(de)dr

T
j PAY,, Z,aW,)

N

< C(B,T) XI' +2E sup

t <s<T

[/ erow., vt

S

+ 2E sup

t<s<T

a
[ ™., g()dB,)

N

+ 2E sup

t <s<T

44

®)

By the Burkholder-Davis-Gundy inequality and the standard estimates 2ab < a’¢ + b*/e, for any

€ > 0, there exists ¢ > 0 such that for any 6 > 0,

T
2E sup j ePIO(Y,, Z,dW,)

t <s<T

T
< 5E<sup eﬂA<r>|Y,|2> 4 %EI P10 |7, 2dr,
t

t<r<T

T
2E sup I eP1 Y, g(r,0,)dB,)

t <s<T

t<I<T

Similarly, for the discontinuous martingale, we have

T
2E sup j j eﬁA(’)(Yr,U,(e),ﬁ(de,dr))‘ < 6E<sup eﬁA(")|Yr|2>
s YE

t <s<T t<r<T

2 T .
; %E(j i et )|U,4(e)|2/l(de)dr>.
From (8), (9) and (10), we deduce that

E( sup eﬂA(’)IYr|2> +E J.lTe[’A(’)az(r)|Yr|2dr +E f[TeﬂA(’) | 2dr

t <s<T

[ j PO, ()2 A(de)dr
tJE

< C(B,T) XT + 36E(sup eﬂA<r>|Y,.|2> + SE] tTeﬁA(’)|Z,|2dr

t <s<T
(T ope 2 ) g (T opaw) 2
+ 5 (L IEe |U,(e)|*A(de)dr | + 5 EL e \g(r,0,)|dr.
Moreover, (11) and (5) lead to

T
< 5E<sup eﬁA(”)|Y,|2> +<E [ erogeopar. )
t

(10)

(11)
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T T
E( sup eﬁA(”)|Y,|2> +E[ eMOR()|Ydr+E [ MO, Pdr
t t

t<r<T

T
+E| [ jE ePAO|U.(e)|2A(de)dr

t<r<T

T
< C(B,T) XTI + 35E<sup eﬁA(")|Y,|2> + %2(1 + s)EI eP10\g(r,0)|?dr
t

T T
< 1 < BA(r) 2 pA@r) 2
4 ( 1+ L)+ < )EUt P07 | dr+J.t jEe U, (e)] A(de)dr]

T
2 1 r
+ S (14 F)E[ PO )Y, P)db. (12)
Finally, from (7) and (12) for 6 < 1/3, the required result follows a

Theorem 3.1. Assume that assumptions (H1)-(H4) are true. Then the BDSDEP (1) has a unique
solution (Y,Z,U) € B} (B, a,R").

Proof. (Existence) We consider the sequence (f"),-1 defined in Lemma 3.3 and the following
MBSDEP with parameters (&, /", 2):

T T T T
Yr=¢Eq+ j (0N dr + j o(r,@") dB, — j Zrdw, — j j U (e)Ti(dr, de). (13)
t t t t E

Since /" satisfies Lipschitz condition, it follows from Proposition 2.4 in [5], that the sequence
" = (Y",Z2",U") is well defined. In addition for any n>1 and m > 1, define for

0 €AY, Z U}, 8" = 5" — ™. Then the triplet (/I\’"’m,in’m,ﬁn’m) solves the following MBSDEP
~SM T _um T T <nm T AN
v = [ Freydr+ [ geyas - [ 27"aw | 0 e)ncar,de), (14)
t t t t E
where V ¢t <r <T,
fn’m(r) :fn(ra Y;laZ’rla U;l) _fm(ra Y;n,Z;n’ U’rl)a
g n,m(,,.) =8 n(r’ Y;}:Z;ls U;z) - & m(r’ Y;n’Z;n, U;z)
Applying Lemma 2.1, we deduce from (14) that
A~JN,m T o~ N,m T ~n,m
eP Y2+ B j ePA a2 ()Y, |2dr + j ePA0\7" 2dr
t t

T An,m ~n,m
+ L jE ePOT, " ()PAde)dr + D eMOaT")?

t<r<T

T ~Nn,m = T ~JNn.m T ANMm A n,m
=2j ePAOT" Pom (1) dly +2j PO g”””(r)dBr—2j‘ ePOY" "
t t t

T An.mN\m T
—2j j POy (e)ﬁ(dr,de)+j PG (P 2dr, 0<t<T. (15)
t E t

Taking suitable B, by Lemma 3.4 and Burkholder-Davis-Gundy inequality, there exists a
nonnegative constant C3 such that

A o T A o T A s
E|: sup eﬂA(~Y)|YZm|2:| +E j P02 Y 2dr + E j ePA| 7" 124y
t t

t <s<T

T AN
+Ej j PO (o) A(de)dr, (16)
t YE
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T —m
< C; Ej PO (P (72" 12)dr
t

T ~JN.m
< C; J'[ a2(r)1//<E sup ePAO(Y) |2>dr. (17)

t <s<T
du  _
v (u)

where yw(u) is a concave and nondecreasing function with y(0) = 0 and -[o+

kup(u) < w(u) < 2kup(u), k> 0.

00,

From Bihari inequality and (16) we deduce that the sequence (®") = (¥",Z",U") is a Cauchy
sequence in the space Bfo,ﬂ (B,a,R¥). Letting n » oo in (18) in uniform convergence in probability,
implies that the triple (Y, Z, U) is solution to (1). This completes the proof of existence.
(Uniqueness) Let (Y,Z,U) and (Y,Z,U) be two solutions to Eq.(1). We define
Y=Y-Y,Z=2-72, U=U-Uand 0<r<T
f(r) :f(ra Yl"szl"s UV) _f(rsfl\rsé\rs/l}l")a

20) = g (nY.,2,U) -2 (Y,.2,,0)),
Thus the triple (Y, Z, U) solves the following BDSDEP

- T_ T T_ Te

Y, = j Frydr + j 3(r)dB, j Z,dw, —j j U,(e)ii(dr,de), 0<t<T. (18)

t t t t E

Applying (ii) in Lemma 2.1 to Eq.(18), we have
- T _ T _ T _
HOT 4 [ MO Pdr+ | Oz dr+ [ | P00 (e)PAde)dr
t t t E

- T = b, r
+ D eMO(AY,)? = 2j eﬁA<’><Yr,ﬂr)>dr+f eP10\g(r)*dr
t t

t<r<T
T _ T _ T -
—2j ePIOY,Z,dW, + 2 j ePAOY,5(r)dB, — 2 j j ePAOY, T, (e)Ti(dr, de) . (19)
t t t E

Taking expectation on both sides of (19) from (H1), (H2) and inequality 2ab < 6a?* + b*/0 for any
6 > 0, we have

_ T _ T _ T _
E(eﬁA(’)|Yt|2+I PO G2 (7)Y, 2dr + j eﬁA(")|Z,4|2dr+J' j eﬁA(’)|U,(e)|2/1(de)dr)
t t t E
T _ - T
- 2K j PO, ) )dr + E j eP10\(7)2dr
t t
T _ B T _
<3E[ eMO2(p(T,P)dr + LE [ eP10a () T, 2dr
t t
T T
4 G AE A [T .( )2
(4 +a>E(J'l Mz dr+ [ [ Mol Z(de)dr). (20)

By Lemma 3.4, and taking f large enough, there exists a nonnegative constant C; such that

T BA(r) 2 vV |2 r BA(r) |7 |2 T BA)T7 2
E[ eM0a(), dr+E [ eMOZ,Pdr+E ePA0| T, (&) 2A(de)dr
t t t E

<C E jTeﬁA<r>a2(r)¢(|?,|2)dr. @1

By (19), (21) and Burkholder-Davis-Gundy inequality, there exists a nonnegative constant C» such
that
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_ T _ T _
E|: sup eﬁA(S)|YS|2:| +E[ MOV 2dr +E | MO, Pdr
t t

t<s<T

T -
+E[ | M0\ (de)dr
t*FE

T -
< C2 B[ eM0a(r)g( Y, P)dr
t

T i}
<C, J. az(r)qﬁ(E sup eﬂA(‘Y)|YS|2>dr.
t

r<s<T

Then by Bihari inequality, we obtain Y =0, Z=0 and U =0, a.s. Here the uniqueness proof
completes. |
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