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1. Introduction

Backward stochastic differential equations (BSDEs) have originally been introduced by Pardoux
and Peng in [6]. After that, in order to give a probabilistic representation for a class of quasilinear
stochastic partial differential equations, they introduced in [7] a new class of BSDEs driven by two
Brownian motions called backward doubly stochastic differential equations (BDSDEs in short).
They have also proved the existence and uniqueness of solution under uniformly Lipschitzian
conditions and gave probabilistic interpretation for the solutions of a class of semilinear stochastic
partial differential equations (SPDEs in short) where the coefficients are smooth enough.

Taking into account the previous results of Pardoux and Peng, several works have attempted to
relax the Lipschitz condition and the growth of the generator function. For instance, Bahlali et al.
established in [3] the existence and uniqueness of a solution for the BDSDE with superlinear growth
generators. Furthermore, Z.Wu and F. Zhang [10] obtained an existence and uniqueness result for
BDSDEs under locally monotone assumptions.

Recently, papers on BDSDEs with jumps started to appear in the literature. For instance, Zhu and
Shi [11] studied BDSDEs driven by Brownian motion and for a Poisson process with non-Lipschitz
coefficients on a random time interval. Aman [2], Aman with Owo [1], and Ren et al. [8] studied a
special reflected generalized BDSDEs (driven by Teugel’s martingales associated with Lévy process)
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with means of the penalization method and the fixed-point theorem. Existence and uniqueness of the
solution to the BDSDE with jumps, in the forward integral, have been studied by Sow in [9] for the
case of non-Lipschitz coefficients.

Inspired by the work of Sow [9], we consider here multidimensional BDSDEs with Poisson jumps
(BDSDEP in short) under non-Lipschitz coefficients. Thus, this work can be seen as an extension of
[9].

Our paper is organized as follows: in Section 2 we give some definitions and preliminary results.
Using these statements we prove existence and uniqueness of the solution of BDSDEP in Section 3.

2. Definitions and Preliminary Results

Let  be a non-empty set,  a  algebra of subsets of  and P a probability measure defined on
 . The triple ,, P defines a probability space, which is assumed to be complete. We assume
given three mutually independent processes :
 a d dimensional Brownian motion Wt t0,
  dimensional Brownian motion B t t0,
 a random Poisson measure  on E  R with compensator dt,de  dedt, where the space
E  R  0 is equipped with its Borel field such that

0, t  A    0, t  A

is a martingale for any A  satisfying A  .  is a  finite measure on and satisfies


E
1  |e|2de  .

Let 0  T   be a non-random horizon time. We consider the family t0tT given by

t  t
W  t,T

B  t
, 0  t  T,

where for any process tt0, s,t
  r  s, s  r  t  , t

  0,t
 . Here denotes the

class of P null sets of  and we assume that T  . Note that the family t0tT does not
constitute a classical filtration.
For an integer Q  1, | . | and .  stand for the Euclidian norm and the inner product in RQ.

Moreover, for every random process att0 with positive values, such that at is t-measurable
for any t  0, we define an increasing process Att0 by setting At  

0

t
a2sds.

Then for every   0, we consider the following sets (where E denotes the mathematical expectation
with respect to the probability measure P):
 0,T

2 RQ the space oft adapted càdlàg processes

 : 0,T    RQ,  2RQ
2  E sup

0tT
eAt|t|2  .

 0,T
2 RQ and 0,T

2,a RQ the space oft progressively measurable processes
 : 0,T    RQ and which satisfy respectively
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 2RQ
2  E 

0

T
eAt|t|2 dt  ,

a 2,aRQ
2  E 

0

T
eAta2t|t|2 dt  .

 2,, 0,T,RQ the space of mappings U :   0,T  E  RQ which are

 -measurable s.t.

U 2RQ
2  E 

0

T 
E
eAt|Ute|2dedt  ,

where  denotes the  algebra oft predictable sets of   0,T.

Notice that the space

0,T
2 ,a,RQ  0,T

2,a RQ  0,T
2 RQd  2,, 0,T,RQ

endowed with the norm

Y,Z,U 2RQ
2  aY 2,aRQ

2  Z 2RQd
2  U 2RQ

is a Banach space as is the space

0,T
2 ,a,RQ   0,T

2,a RQ  0,T
2 RQ  0,T

2 RQd  2,, 0,T,RQ

with the norm

Y,Z,U 2RQ
2  Y 2RQ  aY 2,aRQ

2  Z 2RQd
2  U 2RQ

2 .

Let f :   0,T  Rk  Rkd  Rk  Rk, g :   0,T  Rk  Rkd  Rk  Rk and  a
Rk valued random vector, we are interested in the BDSDEP with parameters , f,g,T:

Y t    
t

T
fr,rdr  

t

T
gr,rdBr  

t

T
ZrdWr

 
t

T 
E
Ure

dr,de, 0  t  T, 1

where r stands for the triple Yr,Zr,Ur.
Now, let us update the notion of solution to Eq.(1).

Definition 2.1. A triple of processes Y t,Zt,Ut0tT is called a solution to Eq.(1), if
Y t,Zt,Ut  0,T

2 ,a,Rk and it satisfies Eq.(1).

Then we shall recall the following result which will be useful in the sequel.

Lemma 2.1. Let X  L0,T
2 Rk,  M0,T

2 Rk,  M0,T
2 Rk,  M0,T

2 Rkd and
  L2,, 0,T,Rk be such that

X t  X0  
0

t
rdr  

0

t
rdBr  

0

t
rdWr  

0

t 
E
re

dr,de, 0  t  T.

Then we have for any   0 and 0  t  T,
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i |X t|2  |X0|2  2 
0

t
Xr,rdr  2 

0

t
Xr,rdBr  2 

0

t
Xr,rdWr

 2 
0

t 
E
Xr,re

de,dr  
0

t
|r|2dr  

0

t
|r|2dr

 
0

t 
E
|re|2dedr 

0rt

Xr2,

where Xr  Xr  Xr the size of the left jump of X at r,

ii eAt|X t|2   
t

T
eAra2r|Xr|2  

t

T
eAr|r|2dr  

t

T 
E
eAr|re|2dedr


trT

eArXr2  eAT|XT|2  2 
t

T
eArXr,rdr  2 

t

T
eArXr,rdWr

 2 
t

T 
E
eArXr,re

de,dr  2 
t

T
eArXr,rdBr  

t

T
eAr|r|2dr.

Proof. The point (i) is an adaptation of the argument developed in Pardoux and Peng [7]. To prove
the second point, we consider the process Zt  eAt|X t|2, 0  t  T. Applying the integration by
parts formula to Zt0tT, we have

dZt  eAtd|X t|2  a2teAt|X t|2dt, 0  t  T.

Using (i), (ii) follows by integration.

3. Existence and Uniqueness

Let us introduce the following assumptions. We say that the parameters , f and g satisfy
assumptions (H), for some   0 if the following hold (where we define for
0  t  T, ht, 0  ht, 0,0, 0, for h  f,g to ease the reading).
 (H1): f and g are jointly measurable and four integrable functions t, t, t,
t, 0,T  R such that for t  0, t,t,t, and t are t

W measurable and
y,y   Rk2, z, z  Rkd2 and u,u  Rk2,

|ft,y, z,u  ft,y , z,u| t|y  y |  t|z  z|t|u  u|,

|gt,y, z,u  gt,y , z,u|2  t|y  y ||y  y |  t|z  z|2  |u  u|2,

where  is a concave and nondecreasing function with 0  0 and 
0

du
u

 .
 (H2): There exists a constant 0    1 such that t  , for all t  0.
 (H3): For all 0  t  T, a2t  t  2t  2t  0.
 (H4):  is a  measurable random vector, such that EeAT||2  .
 (H5): For any t,y, z,u  0,T  Rk  Rkd  Rk, ft,y, z,u and gt,y, z,u are t measurable
and the integrability condition holds

E 
0

T
eAr

|fr, 0|2

a2r
dr  

0

T
eAr|gr, 0|2dr  .



Multidimensional BDSDEs With Poisson Jumps Under Non-Lipschitz Coefficients 42

We recall the following results, which will be useful in the proof of uniqueness.

Lemma 3.1 (Gronwall). Assume given T  0, K  0 and ,  : 0,T  R such that

0

T
sds  . If

0  t  T, t  K  
0

t
ssds  ,

then we have

0  t  T, t  Kexp 
0

t
sds .

Lemma 3.2 (Bihari’s inequality). Let T  0, u,v continuous non-negative functions on 0,T and a
continuous function H  S. If

ut  
0

t
vrHurdr, 0  t  T,

then ut  0 for all 0  t  T.

As in [4], Theorem 1, we consider the sequence fnn1 defined by

fn  f1
n, f2

n,, fk
n

where

i  1,k, f in, t,y, z,u  inf
vRk

f i, t,v, z,u  n  At|v  y|.

We have the following result, whose proof is omitted since it is an adaptation of step 1 of Theorem 1
in [4].

Lemma 3.3. The sequence of t  progressively measurable function fn satisfies:
(i) y, z,u  Rk  Rkd  Rk, |fn, t,y, z,u  f, t,y, z,u| kt 2A

n
(ii) y,y   Rk2, z, z  Rkd2 and u,u  Rk2,

|fn, t,y, z,u  fn, t,y , z,u| kn  At|y  y |  t|z  z|t|u  u|,

|fn, t,y, z,u  fn, t,y , z,u |  kt|z  z|kt|u  u|.

(iii) The integrabilty condition holds E 
0

T
eAr |fnr,0|2

a2r
dr  .

We also have the following result which is important for the proof of our main result. Its proof
can be seen in [4], Lemma 1.

Lemma 3.4. If u is a concave and nondecreasing function with 0  0 and 
0

du
u

 

there exists a concave nondecreasing function u with 0  0 and 
0

du
u

  moreover

a u  u   u  a u  u , where a  0 is a constant.
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Proposition 3.1. Assume that assumptions (H1)-(H5) are true and let Y t,Zt,Ut0tT be a solution
to the MBSDEP (1). Then for a large enough , there exists a constant c  0 depending only on 
and T such that, for any 0  t  T,

E
trT
sup eAr|Yr|2  E 

t

T
eAra2r|Yr|2dr  E 

t

T
eAr|Zr|2dr

E 
t

T 
E
eAr|Ure|2dedr

 C,T EeAT||2  E 
t

T
eAr |fr,0|2

a2r
dr  E 

t

T
eAr|gr, 0|2dr

E 
t

T
eAra2r|Yr|2dr. 2

Proof. Applying Lemma 2.1, we deduce from (1)

eAt|Y t|2   
t

T
eAra2r|Yr|2dr  

t

T
eAr|Zr|2dr  

t

T 
E
eAr|Ure|2dedr

 trT e
ArYr2  eAT||2  2 

t

T
eArYrfr,rdr

2 
t

T
eArYrgr,rdBr  2 

t

T
eArYrZrdWr

2 
t

T 
E
eArYrUre

dr,de  
t

T
eAr|gr,r|2dr, 0  t  T. 3

By the assumptions (H1), (H2) and (H3) and the inequality 2ab  a2  b2/ for any   0, we
have

2Yrfr,r  2Yrfr,r  fr,Yr, 0,0  fr,Yr, 0,0  fr, 0  fr, 0

 2|Yr||fr,r  fr,Yr, 0,0|2|Yr||fr,Yr, 0,0  fr, 0|2|Yr||fr, 0|

  4
1 


2 a

2r|Yr|2  1
2 |Zr|2  |Ur|2  a2r|Yr|2  2

a2r
|fr, 0|2 4

|gr,r|2  |gr,r  gr, 0  gr, 0|2

 1  1
 a

2r|Yr|2  1  1
 |Zr|2  |Ur|2  1  |gr, 0|2. 5

Take expectation on both sides of (3), by (4) and (5), we have

EeAt|Y t|2 eAt|Y t|2  4
1  

2 E 
t

T
eAra2r|Yr|2dr  1

2  
 E 

t

T
eAr|zr|2dr

 1
2  

 
t

T 
E
eAr|Ure|2dedr

 EeAT||2   2

E 

t

T
eAr |fr,0|2

a2s
dr  1  E 

t

T
eAr|gr, 0|2dr

 1  1
 E 

t

T
eAra2r|Yr|2dr. 6

Let   2
1 and  be large enough, there exists a nonnegative constant C,T such that

EeAt|Y t|2 eAt|Y t|2  E 
t

T
eAra2r|Yr|2dr  E 

t

T
eAr|zr|2dr

 
t

T 
E
eAr|Ure|2dedr  C,T X t

T, 7
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where

X t
T  EeAT||2   E 

t

T
eAr

|fr, 0|2

a2r
dr  E 

t

T
eAr|gr, 0|2dr

 E 
t

T
eAra2r|Yr|2dr.

Futhermore using (3) once again and (7), we have

E
t rT

sup eAr|Yr|2  E 
t

T
eAra2r|Yr|2dr  E 

t

T
eAr|zr|2dr

 
t

T 
E
eAr|Ure|2dedr

 C,T X t
T  2E

t sT

sup 
s

T
eArYr,ZrdWr

 2E
t sT

sup 
s

T 
E
eArYr ,Ure

dr,de

 2E
t sT

sup 
s

T
ee

Ar
Yr,grdBr . 8

By the Burkhölder-Davis-Gundy inequality and the standard estimates 2ab  a2  b2/, for any
  0, there exists c  0 such that for any   0,

2E
t sT

sup 
s

T
eArYr,ZrdWr  E

t rT

sup eAr|Yr|2  c2


E 

t

T
eAr|Zr|2dr,

2E
t sT

sup 
s

T
eArYr,gr,rdBr  E

t rT

sup eAr|Yr|2  c2


E 

t

T
eAr|gr,r|2dr. 9

Similarly, for the discontinuous martingale, we have

2E
t sT

sup 
s

T 
E
eArYr ,Ure

de,dr  E
t rT

sup eAr|Yr|2

 c2


E 

t

T 
E
eAr|Ure|2dedr . 10

From (8), (9) and (10), we deduce that

E
t sT

sup eAr|Yr|2  E 
t

T
eAra2r|Yr|2dr  E 

t

T
eAr|zr|2dr

 
t

T 
E
eAr|Ure|2dedr

 C,T X t
T  3E

t sT

sup eAr|Yr|2  c2


E 

t

T
eAr|Zr|2dr

 c2


E 

t

T 
E
eAr|Ure|2dedr  c2


E 

t

T
eAr|gr,r|2dr. . 11

Moreover, (11) and (5) lead to
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E
t rT

sup eAr|Yr|2  E 
t

T
eAra2r|Yr|2dr  E 

t

T
eAr|zr|2dr

 E 
t

T 
E
eAr|Ure|2dedr

 C,T X t
T  3E

t rT

sup eAr|Yr|2  c2


1  E 

t

T
eAr|gr, 0|2dr

 c2


1  1

  
c2


E 

t

T
eAr|Zr|2dr  

t

T 
E
eAr|Ure|2dedr

 c2


1  1

 E 
t

T
eAra2r|Yr|2dr. 12

Finally, from (7) and (12) for   1/3, the required result follows .

Theorem 3.1. Assume that assumptions (H1)-(H4) are true. Then the BDSDEP (1) has a unique
solution Y,Z,U  B0,T

2 ,a,Rk.

Proof. (Existence) We consider the sequence fnn1 defined in Lemma 3.3 and the following
MBSDEP with parameters , fn,g:

Y t
n    

t

T
fnr,r

ndr  
t

T
gr,r

ndBr  
t

T
Zr
ndWr  

t

T 
E
Ur

nedr,de. 13

Since fn satisfies Lipschitz condition, it follows from Proposition 2.4 in [5], that the sequence
n  Yn,Zn,Un is well defined. In addition for any n  1 and m  1, define for

  Y,Z,U,


n,m

 n  m. Then the triplet 

Y
n,m

,

Z
n,m

,U
n,m
 solves the following MBSDEP


Y t
n,m

 
t

T
f
n,m
rdr  

t

T
gn,mrdBr  

t

T 
Zr
n,m
dWr  

t

T 
E
Ur

n,m
edr,de, 14

where  t  r  T,

f n,mr  f nr,Yr
n,Zr

n,Ur
n  f mr,Yr

m,Zr
m,Ur

n,

g n,mr  g nr,Yr
n,Zr

n,Ur
n  g mr,Yr

m,Zr
m,Ur

n.

Applying Lemma 2.1, we deduce from (14) that

eAr|

Y t
n,m

|2   
t

T
eAra2r|


Yr
n,m

|2dr  
t

T
eAr|


Zr
n,m

|2dr

 
t

T 
E
eAr|Ur

n,m
e|2dedr  

t rT

eAr

Yr
n,m
2

 2 
t

T
eAr


Yr
n,m

fn,mrdr  2 
t

T
eAr


Yr
n,m
g n,mrdBr  2 

t

T
eAr


Yr
n,m

Zr
n,m
dWr

 2 
t

T 
E
eAr


Yr
n,m
Ur

n,m
edr,de  

t

T
eAr|g n,mr|2dr, 0  t  T. 15

Taking suitable , by Lemma 3.4 and Burkholder-Davis-Gundy inequality, there exists a
nonnegative constant C3 such that

E
t sT

sup eAs|

Ys
n,m

|2  E 
t

T
eAra2r|


Yr
n,m

|2dr  E 
t

T
eAr|


Zr
n,m

|2dr

 E 
t

T 
E
eAr|Ur

n,m
e|2dedr, 16



Multidimensional BDSDEs With Poisson Jumps Under Non-Lipschitz Coefficients 46

 C3 E 
t

T
eAra2r|


Yr
n,m

|2dr

 C3 
t

T
a2r E

t sT

sup eAs|

Ys
n,m

|2 dr. 17

where u is a concave and nondecreasing function with 0  0 and 
0

du
u

 ,

kuu  u  2kuu, k  0.

From Bihari inequality and (16) we deduce that the sequence n  Yn,Zn,Un is a Cauchy
sequence in the space 0,T

2 ,a,Rk. Letting n   in (18) in uniform convergence in probability,
implies that the triple Y,Z,U is solution to (1). This completes the proof of existence.

(Uniqueness) Let Y,Z,U and 

Y,

Z,U be two solutions to Eq.(1). We define

Y  Y 

Y, Z  Z 


Z, Ū  U  U and 0  r  T

f r  f r,Yr,Zr,Ur  f r,Yr,Zr,Ur,

gr  g r,Yr,Zr,Ur  g r,Yr,Zr,Ur.

Thus the triple Y ,Z ,Ū solves the following BDSDEP

Y t  
t

T
frdr  

t

T
grdBr  

t

T
Z rdWr  

t

T 
E
Ūre

dr,de, 0  t  T. 18

Applying (ii) in Lemma 2.1 to Eq.(18), we have

eAt|Y t|2  
t

T
eAra2r|Y r|2dr  

t

T
eAr|Z r|2dr  

t

T 
E
eAr|Ūre|2dedr

 
t rT

eArY r2  2 
t

T
eArY r, frdr  

t

T
eAr|gr|2dr

 2 
t

T
eArY rZ rdWr  2 

t

T
eArY rgrdBr  2 

t

T 
E
eArY rŪre

dr,de . 19

Taking expectation on both sides of (19) from (H1), (H2) and inequality 2ab  a2  b2/ for any
  0, we have

E eAt|Y t|2  
t

T
eAra2r|Y r|2dr  

t

T
eAr|Z r|2dr  

t

T 
E
eAr|Ūre|2dedr

 2E 
t

T
eArY r, frdr  E 

t

T
eAr|gr|2dr

 3E 
t

T
eAra2r|Y r|2dr 


4
E 

t

T
eAra2r|Y r|2dr

4

  E 

t

T
eAr|Z r|2dr  

t

T 
E
eAr|Ūre|2łdedr . 20

By Lemma 3.4, and taking  large enough, there exists a nonnegative constant C1 such that

E 
t

T
eAra2r|Y r|2dr  E 

t

T
eAr|Z r|2dr  E 

t

T 
E
eAr|Ūre|2dedr

 C1 E 
t

T
eAra2r|Y r|2dr. 21

By (19), (21) and Burkholder-Davis-Gundy inequality, there exists a nonnegative constant C2 such
that
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E sup
t sT

eAs|Y s|2  E 
t

T
eAra2r|Y r|2dr  E 

t

T
eAr|Z r|2dr

 E 
t

T 
E
eAr|Ūre|2łdedr

 C2 E 
t

T
eAra2r|Y r|2dr

 C2 
t

T
a2r E sup

r sT
eAs|Y s|2 dr.

Then by Bihari inequality, we obtain Y  0, Z  0 and Ū  0, a.s. Here the uniqueness proof
completes. 
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