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Abstract. This paper, is an attempt to extend the notion of stochastic viscosity solution to reflected
semi-linear stochastic partial differential equations (RSPDEs) with a non-Lipschitz condition on the
coefficients. Our method is fully probabilistic and use the recently developed theory on reflected
backward doubly stochastic differential equations (RBDSDEs). Among other, we prove the existence
of the stochastic viscosity solution, and further extend the nonlinear Feynman-Kac formula to
reflected SPDEs, like the one that appeared in [2]. Indeed, in [2] Aman and Mrhardy established a
stochastic viscosity solution for semi-linear reflected SPDEs with nonlinear Neumann boundary
condition by using its connection with RBDSDEs. However, even [2] considers a general class of
reflected SPDEs, all their coefficients are at least Lipschitzian. Therefore, our current work can be
thought of as a new generalization of a now well-know Feymann-Kac formula to SPDEs with large a
class of coefficients, which does not seem to exist in the literature. In other words, this work extends
(in a non boundary case) Aman and Mrhardy’s paper.

Key words: Stochastic Viscosity Solution, Reflected Backward Doubly Stochastic Partial
Difterential Equations, Non-Lipschitz Conditions.
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1. Introduction

The notion of the viscosity solution for a partial differential equation, first introduced in 1983 by
Crandall and Lions [9], has had tremendous impact on the modern theoretical and applied
mathematics. Today the theory has become an indispensable tool in many applied fields, especially
inoptimal control theory and numerous subjects related to it. We refer to the well-known "User’s
Guide" by Crandall et al. [10] and the books by Bardi et al. [5] and Fleming and Soner [12] for a
detailed account for the theory of (deterministic) viscosity solutions. Given the importance of the
theory, as well as the fact that almost all the deterministic problems in these applied fields have their
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stochastic counterparts, it has long been desired that the notion of viscosity solution be extended to
stochastic partial differential equations; and consistent efforts have been made to prove or disprove
such a possibility. Some of articles by Lions and Souganidis [17, 18] have finally shown an
encouraging sign on this subject. Indeed, in [17], the notion of stochastic viscosity solution was
introduced for the first time; they use the so-called "stochastic characteristic" to remove the
stochastic integrals from a SPDEs, so that the stochastic viscosity solution can be studied w-wisely.
They also, in [18], derive the applications of such solutions to, among other things, pathwise
stochastic control and front propagation and phase transitions in random media were presented.
Next, two others notions of stochastic viscosity solution of SPDEs have been considered by
Buckdahn and Ma respectively in [6, 7] and [8]. Roughly speaking, in [6, 7], Buckdahn and Ma
consider a SPDE the following: for all (¢,x) € [0,7] x R”"

du(t,x) = {Lu(t,x)+f(t,x,u(t,x),0*(x)Du(t,x))}dt + Zlil gi(t,x,u(t,x)) o (d_Bt,
u(T,x) = h(x),

where o%t denote backward Stratonovich differential integral with a standard d-dimensional
Brownian motion. The function f, g, # are measurable and L is the second-order differential operator
defined by: where

d k n
L= 6u()o;(x)0us, + I bi(x)ds, (1)
ij=1 I=1 i=1

in which o(.) = [G,-,-]Z}-’Ll, (by,+++b,) are certain measurable function and o*(.) denotes the
transpose of o(.). They used the Doss-Sussman-type transformation (or the robust form). Although
technically different, their method has the same spirit as one appearing in [17, 18]. More precisely,
they shown that under such a random transformation, SPDEs can be converted to an ordinary PDE
with random coefficients. Hence, they give a sensible definition of the stochastic viscosity solution,
which will coincide with the deterministic viscosity solution when f is deterministic and g = 0. They
also naturally established the existence and uniqueness of this stochastic viscosity solution to SPDE.
In [8], Buckdahn and Ma show that an It6-type random field with reasonably regular "integrands"
can be expanded, up to the second order, to the solutions to a fairly large class of stochastic
differential equations with parameters, or even fully-nonlinear stochastic partial differential
equations, whenever they exist. Using such analysis they then propose a new definition of stochastic
viscosity solution for fully nonlinear stochastic PDEs, by the notion of stochastic sub and super jets
in the spirit of its deterministic counterpart. They also prove that this new definition is actually
equivalent to the one proposed in their previous works [6] and [7], at least for a class of quasilinear
SPDEs. In all their previous three works, to establish existence and/or uniqueness of stochastic
viscosity solution for SPDE, Buckdahn and Ma used the theory of backward doubly SDEs introduced
earlier by Pardoux and Peng [22] which is of the form

T T - T
Yo=é+ [ fs.¥oZyds+ | gl 2)dB. - | ZaaW.. ®)

This kind of BDSDEs has a practical background, particularly in finance. In such domain, the extra
noise B can be regarded as some extra information, which can not be detected in the financial
market, but is available to some particular investors. In [2], Aman and Mrhardy consider the
following obstacle problem for SPDEs with nonlinear Neumann boundary condition that we write
formally as: for P-a.e. ® € Q,
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(. . ou(tx)
(i) mln{u(t,x) —h(t,x),— Era Lu(t,x) — f(t,x,u(t,x),c*(x)Du(t,x))

Arey
OPﬁ¢’g’h’l< _g(tsxsu(tsx))'Bl} = 05 (tsx) € [09 T] X ®5

@) 2D (1) 4 g(rru(en) =0 () € [0.7] x 0O,

L (itd) u(T,x) =Il(x), x € O,

where O is a connected bounded domain included in R? (d > 1) and £,/ and 4 are measurable

; : S _ dB
functions. Finally B, = <

B called "white noise" and g.B, means the scalar product. They derived and proved a stochastic
viscosity solution of this SPDE by a direct links with the following reflected generalized BDSDE
with Lipschitz coefficients: for all € [0, T

is, at least formally, the time derivative of the standard Brownian motion
«—

T T — T
Vo= &+ [ s Yuz)ds+ [ g(s.YoZ)dBo+ Kr =K~ | Z.aW.. 3)

The increasing process K is introduced to push the component Y upwards so that it may remain
above the given obstacle process S. This push is minimal such that

j j(Yt ~S)dK, = 0, @)

which means that the push is only done when the constraint is saturated i.e. ¥; = S;. In practice
(finance market for example), the process K can be regarded as the subsidy injected by a government
in the market to allow the price process Y of a commodity (cocoa, by example) to remain above a
threshold price process S. Before Aman’s work, Bahlali et al. [4]) proved without application to
reflected SPDE, existence and uniqueness result (resp. existence of minimal or maximal solution) of
the previous RBDSDE when ¢ = 0, under global Lipschitz (resp. continuous) condition on the
coefficient f. Unfortunately, the global Lipschitz or continuous condition cannot be satisfied in
certain models that limits the scope of the result of [2] for several applications (finance, stochastic
control, stochastic games, SPDEs, etc.,...). Some authors have previously tried to give weak
conditions for reflected BDSDEs. We can cite the work of Aman [1], Aman and Owo [3]. However,
all this conditions remains insufficient to take into account all situations. For example, let consider
the function f'and g defined respectively by

W W [

f(taysz) = % + % z, g(taysz) = ;W + %Zs (5)
forany C > 0 and 0 < a < 1. It not difficult to prove that f'and g are not Lipschitz and then the can
not use the previous result to prove that RBDSDE with generator the function f and g defined in (5).
To correct this shortcoming, we relax in this paper the global Lipschitz condition on the coefficients
fand g to following non-Lipschitzian assumptions.

Main assumptions. There exist a non-random function p : [0,7] x R" - R* which is not
necessarily continuous in its first argument and satisfying "Condition A", and two constants C > 0
and 0 < a < 1 such that
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IA

Rt,y1,21) =Rt y2,22)|? p(t,v1 —y2f*) + Cllz1 — z2||?
||g(t9y1521) _g(tsyZaZZ)“z < p(ta lyl _y2|2) + C”Zl _22”2'

Condition A. For fixed ¢ € [0,7], p(¢,.) is continuous, concave and non-decreasing with p(z,0) = 0
such that:
(i) for fixedu € R*,

T
j p(t,u)dt < +oo,
0

(i) for any M > 0, if there exist a function u : [0,7] -» R* solution of the following ordinary
differential equation

u'(¢) ~Mp(t,u), ©)
u(l) = 0.

then u is unique and u(¢) = 0, ¢ € [0, T].

In this context, our paper have two goals: First, we establish existence and uniqueness result for
RBDSDE the (3) when coefficients f and g satisfy "Main assumption" and hence establish a
comparison principle. Next, using RBDSDE (3), our second goal is to derive the existence of a
stochastic viscosity solution of SPDE OPY02/) and further extend the nonlinear Feynman-Kac
formula in special case where the function g does not depend on z. In our point of view, there exist
real novelty in this work. Indeed, since functions f and g satisfy "Main assumptions", the
"penalization method" that is usually used in the reflected BSDE framework does not work.
Consequently it is impossible to adapt the existing method to prove existence of a stochastic
viscosity of OPY0¢) by a convergence result of a suitable sequence of non reflected SPDE
OPYr02hD where for all n € N, the function f; defined by

ﬁi(tsysz) Zf(t,y,Z) - n(y - h(t,X[))_, (7)

is obtained by penalization method (see [14], for more detail). For this reason, our method is based
on the approximation of function f by the sequence of Lipschitz function introduced in Lepeltier and
San Martin [13]. The paper is organized as follows. In Section 2, we give some notations and
preliminaries, which will be useful in the sequel. In Section 3, we establish the existence and

uniqueness theorem for a class of reflected BDSDEs with non-Lipschitzian coefficients.

2. Reflected BDSDEs With Non-Lipschitzian Coefficients

2.1. Preliminaries

For a final time 7 > 0, we consider {W;;0 < ¢t < T} and {B;;0 < t < T} two standard Brownian
motion defined respectively on complete probability spaces (Qi,F1,P;) and (Q,F>,P>) with
respectively R and R’ values. For any process {K;, ¢ € [0, 7]} defined on the completed probability
space Q;, F;,P;) we set the following family of o-algebra F%, = 0{K, — K, s < r < t}. In particular,
FK = .7-"{{, Next, we consider the product space (Q2, F,[P), where



Stochastic Viscosity Solutions of Reflected SPDEs With Non-Lipschitzian Coefficients 20

Q= xQ, F=F1F,,P=P, P,

and F; = F' ® F?;. We should note that since F" = (F/" )0y and F® = (F2;) o are
respectively increasing and decreasing filtration, the collection F = (F;) (0,77 is neither increasing
nor decreasing. Therefore it is not a filtration. Further, all random variables { and 7 defined
respectively in Q; and Q, are viewed as random variables on Q via the following identification:

{(w) =C(w1); (o) =rn(w), o= (01,02).

We need in throughout this paper the following spaces:
MZ2(F, [0, T]; R**) denote the set of dP ® dt a.e. equal and (d x k)-dimensional jointly measurable
random processes {gTot;O <t < T} such that

(@) ol = B([ loddr) < +eo

(i1) ¢, is F;-measurable, for a.e. ¢ € [0, T].
We denote by S?(F, [0, T]; R*) the set of continuous k-dimensional random processes such that

() llollg =E(sup | @/ [?) <+

0<I<T

(i1) ¢, is F;-measurable, for any ¢ € [0, 7].
We denote also by A%(F,[0,7];R) the set of continuous and increasing random processes
{p+;0 <t < T} such that

() llel%: =E(er*) < +o

(i1) ¢, is F;-measurable, for a.e. ¢ € [0, T].
In the sequel, for simplicity, we shall set S*(R), M?(R¢) and A*(R*) instead of
S2(F,[0,T];RY),  MZ2(F,[0,7],RY) and  A%(F,[0,T],R") respectively  and  set
E2(0,7) = S*(R) x M2(RY) x A%(R).
Let’s give now our concept of solution that we will establish in the first part of this paper.

Definition 2.1 (Notion of solution).

(i) The triplet of processes (Y, Z, K) is called solution of a RBDSDE (3) if it belongs in E?(0,T) and
satisfies (3) and (4).

(i) The triplet of processes (¥, Z, K) is said to be a minimal solution of a RBDSDE (3) if it belongs
in E2(0,T) and for any other solution (¥,Z,K) of RBDSDE (3), we have Y < Y.

(iii) The triplet of processes (¥, Z, K) is said to be a maximal solution of a RBDSDE (3) if it belongs
in E2(0,T) and for any other solution (Y, Z,K) of RBDSDE (3), we haveY > Y.

All the result of the first part of our paper will be obtained under the following assumptions. The
generators f: Qx[0,7]x RxR? > Rand g : Q x[0,7] x R x RY - R, the terminal value & and
the obstacle process S = (S;) =0 satisfy
(H1) & is a Fr-measurable random variable such that E(|&]?) < +o
(H2) S € S*(R) such that Sy < &

(H3) f(.,y,z) and g(.,y,z) are jointly measurable such that f£¢,0,0) € M?(R) and
2(£,0,0) € M2(R"). Moreover for all (¢,y;,z;) € [0,T]] x RxR? i = 1,2 we have:

A

J/(taylazl) _f(tay2az2)|2 < C(lyl _)’2|2 + ”Zl _Z2||2)
lg(tyi,21) —gt,y2,22) 17 < Clyi —y2* +allzi — 22|12,

where where C > 0and 0 < a < 1.
(H4) f(.,y,z) and g(.,y,z) are jointly measurable such that £#0,0) € M?>(R) and
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2(£,0,0) € M2(R"). Moreover for all (z,y:,z;) € [0,7]] x R xR? i = 1,2 we have:

Jf(taylszl) _ﬂt9y2522)|2 < p(ts bjl _y2|2) + C“Zl _22“2)
lg(tyr,z1) —g(ty2,22)1* < p(t, i —ya2f*) + allzi — 22|12,

where C>0 and 0 <a <1 and p:[0,7] xR* - R" is a non-random function satisfying
"Condition A".

Remark 2.1

(i) Lipschitz condition on generators f, g with respect to the variable y is the special case of (H3). It
suffices to choosep(t,u) = Cu.

(i1) In addition to the case of Lipschitz, there exist these two following examples p; and p, defined
by: for 6 € (0, 1) be sufficiently small,

ulog(u™), 0<uc<sé,
pl(tau) =
Slog(6™) +x1(O)(u—90), u>34

and

(o) = ulog(u")log(log(u)), 0<uc<s§,
PR Sl0g(6-1) log(log(8)) +K>(8)(u—8). u > o,

Let recall some existence and uniqueness results establish previously by Bahlali et al. [4] under
Lipschitz condition.

Proposition 2.1 [4]. Assume (H1)-(H3) hold. Then RBDSDES (3) has a unique solution.

Proposition 2.2 [3]. Assume that RBDSDEs associated respectively to (f',g,E',S") and (f,g,£2,5?)
have solutions (Y',Z',K") and (Y?,Z% K?). Assume moreover that:

(i) &' <Eas,

(ii) S} < S? as., forallt € [0,7)

(iii) ' satisfies (H3) such that f1(¢,Y*,Z%) < f2(t,Y*,Z?) a.s. (resp. f* satisfies (H3) such that
@Y, ZY <A, Y, 7Y as.).

Then Y} < Y? a.s., forall t € [0,T].

2.2. Main results

Our objective, in this section is to derive an existence and uniqueness result for reflected
BDSDEs with data (&,f,g,S) where the generators are non-Lipschitzian. More precisely we assume
assumptions (H1), (H2) and (H4). For this purpose, let consider the sequence of processes
(Y",Z",K"),., defined recursively as follows. For ¢ € [0,T], Y°(¢) = Z°(r) = 0, and for all € N*,

Y7 =&+ [ fis. v Z0yds + [ g5, i Z0)dB, + [ Kz — [ ZiaW,

(i)Yt = S, ()
con (T

id) (Y7 = S)dK? = 0.
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For each n > 1 and fixed Y"!, it not difficult to show that the data of RBDSDEs (8) satisfy
assumptions (H1), (H2) and (H3). Therefore, in view of Proposition 2.1, RBSDEs (8) has a unique
solution (Y",Z",K") ., € £*([0,T)).
Our next aim is to prove that the sequence (¥”,Z",K") ., converges in £([0,7]) to a process
(Y, Z,K) which is the unique solution of RBDSDE:s (3). We have this result.

Theorem 2.1. Assume that (H1), (H2) and (H4) hold. Then the RBDSDEs (3) has a unique solution
(Y,Z,K) € E*([0,T)).

In order to provide the proof for Theorem 2.1, we need the two lemmata that follow.
Lemma 2.1. Assume that (H1), (H2) and (H4) hold. Then for all 0 < t < T, n,m > 1, we have

Ccr T
By - i < et (LG v 1) [ pGs Byt - vt s,
t

Proof. Using 1t6’s formula, and the fact that LT(YT’" - YH(dKH™ — dK?) < 0, we have
T
D S A CIL EI 2z — 70 2ds
t
T
< 2B [ (v — Y (s, v Zem) = fls, Vi Z0))ds
t
T 2
]EJ. lg(s, Yrrm=1 zmmy — o(s, Y11, Zm)|“ds.
t
The rest of the proof follows as in [16] of N’zi and Owo. |

Lemma 2.2. Assume that (H1), (H2) and (H4) hold. Then, there exists T1 € [0, T[ and M, > 0 such
that for all t € [Ty, T) and n > 1, we have E|Y?|* < M.

Proof. Recall again Ito’s formula to get
T
EY;[*+E | |z2Pds
t
, T T T 5
= BIEP +2E [ (Y2 fis, v Z0))ds + 2B [ YidK? + [ [g(s, Y2, 22)ds.
t t t
Using (H4) and Young’s inequality 2ab < +a* + 0b* for any 6 > 0, we obtain

2V Y ZD) < IV + O)fts Y, Z)

VAN

L 1YeP 4 20p(s, 17271 ) + 20C1 2217 + 201f(5,0,0) )
and
85, Y, ZDF < (1+0)p(s, V27 ) + (1 + 0)all Z211> + (1 + 5)lg(s,0,0) . (10)

Using again Young’s inequality, we have for any 8 > 0,
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T T 1 ) 2
2E j[ Y1dK? = 2F j[ SydK? < LB sup |S,2 + BEKY — K7

0=t<T

But since
T
Ki-Ki =Y —&= [ fis.ye!,zp)ds
t
T — T
~ | gty zyaB, + [ zzaw,, 1< [0.7),
t t
together with (9) and (10) lead for any ¢ € [0, 7],
E(K} - K7)?

T 2 T — |2
SSE(lY?FHélMUtf(s,Yg-l,Zg)ds +|[ gt v 20|+

[ zam,

)

T T
SB[ (04 00pG 7P + (1 + Ol Z2 1 + (1 + Dle 0,00 )as + [ 122125,
t t

T
< SB(172P + P+ 7] (oG 1 )+ 2C1 2017 + 250,008 )ds )

Therefore,
T
(1= 5B)BIY;|> +[1-20C — (1 + 0)a — SHRTC + (1 + O)a + D] E [ |z ds
t
2, 1o [fiynp d 2
< (1= SP)BIES + LB [ |v2Pds +[(30+ 1) + SB(1 +0) + 108T] [ p(s, BYz" [)ds
t t

T
+Ej [(29+ 10BT)|f(s,0,0)[% + (1 + %)(1 +5/3)|g(s,0,0)|2}ds+ %E sup [S,[2.
t 0T

1—a—s5BQrC+a+1)
2c+a+55a

Choosing 3,0 > 0 such that B < —1=% — and 6 <

sQrCHa+) , there exists a constant
¢ = c(a,T,C) > 0 satisfying

T T
EIY;[? < c+ cBIEP + B [ [ViPds+c | pls By )ds
t t
T
+ ¢ [ [[f(5,0,0)* +[g(s.0,0)* Jds + cE sup |S, .
4 0<i<T

Hence, it follows from Gronwall’s inequality that
2 T 2
EIY; <l +ce” [ p(s. B[y P)ds, (11)
t

where

1 _ .,cT 2 2 r 2 2
pi =ce" 1+EE]+E sup |SP+E | [|f(s,0,0)]* +[g(s,0,0)* ]ds .
t

0<i<T
Let set M = max{ceCT,; 1%"‘ + 1>e%} and M, = 2u}. Recall (i) of Condition A, we have

J.gp(s,Ml)ds<+oo and hence there exists 7 € [0,7] such that I; p(s,Ml)ds=“—M‘1). If
1
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J.(?p(s,Ml)ds = ”—Aj then 77 = 0. But if .[OTp(s,Ml)ds > ) so for all ¢t € [Ty, T] it follows from

M b
(11), the fact that p(z,.) is non-decreasing and the induction method that E|Y7|> < M, for all
n=1. |
Now we are able to deliver the proof for Theorem 2.1.

2.2.1. Proof of Theorem 2.1.

Existence. For any ¢ € [0, 7], we consider the sequence of processes (¢,(¢)).>1 defined recursively
by

T T
$o() = M| pls.Mi)ds and ¢ (1) = M| pls, 9 ())ds
With the same reasons as those given in [16], (¢,(¢)) =0 is a non-increasing sequence and converges

uniformly to 0 for all ¢ € [T}, T]. Moreover, Lemmata 2.1 and 2.2 permit us to derive that for all
te [T, T]andn, m > 1

BIY!" = Y71 < g1 (1) < M. (12)
On the other hand, It6’s formula together with the fact that

T
[ rem = yuyakwm - ak) < o,
t

assumptions (H1) and (H4) and Young’s inequality 2ab < %az +60b?, 0 > 0 lead that for all
te [TlaTJ

T
Ypm = Yi+ (1= 0C—a) [ |z - 2 Pds
t
T T
< & [ vipds+ @+ ) [ plsfyemt -yt s
9 t t
a —
w2 [ (vem - v, (gls, Yem, zem) - gs, i, Z0))dB )
t
T
2| (rwm - vy (zem - ZDaw).
t
1—a

Furthermore, setting 6 = == with no more difficult calculations and (12) we obtain

T —
sup (Byp — viP) + L5 2m [ iz znpas < (L5 L2l )9, ().
1

T\<t<T

from which, we deduce by Burkhdlder-Davis-Gundy’s inequality that

T
B sup [¥p" = VI[P + B [ (207 = 21 ds < Ao (T),
1

T\<t<T

where A is positive constant depending on C, T, T, @ and M. Since ¢,(¢) — 0, forall ¢t € [T}, T], as
n - oo, it follows that (¥",Z") is a Cauchy sequence in the Banach space
S2([T1,T]) x M?([T),T]). Therefore it converges to a process (Y,Z) belonging in
S*([T1,T]) x M?(Ty,T]). On other words, we have
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ro 5
Ef 1Z2-7 Pds — 0, as n — o
T

and
E|Y?-Y,* — 0, as n — oo
Next, applying Holder, BDG’s inequalities and (H4) we respectively

T 2
B[ (fs.v2.22) - fls. Y. Z,))ds
t

r 2 r 2
< (T- Tl)CJEJ.T 2z — Z, [Pds + (T — TI)EJ.T p(s,|V" — Y, |*)ds
1 1

Er (T,

< r n 2 (
<(T- Tl)CEIT Zn — 7, [ds +
1

2
E sup

T\<t<T

T T
[ gG.vnznaB, - | g5, ¥0.2,)dB,
t t

T
<aE[ |Z-7 Pds+LuT0),
T

and

E sup

TW<t<T

2 T
<E[ |22 [ds
T

T T
[ Zyaw, - | .,

Therefore according to above, we have for all ¢ € [T, 7],

T T
j s, Y1, 70 ds — j f(s,Ys,Zs)ds in P — probability, as n — oo,
t t

T T
j (s, Y7, Z")dB, —»j (s, Ys,Z,)dB, in P — probability, as n — oo,
t t
and
T T . oq .
J. Z8dwWs — I ZdW; in P — probability, as n — oo.
t t

On the other hand in view of (8), we get also

E sup K" —K;|*? <E[Y#" Y4 [>+E sup |Y7 - Y7
T\<t<T T\<i<T
T 2
+B| [ (s v v~ fls 7 Z2))ds
T

1 - |2
+E sup || (gl vt Yoo - (s, Y2, Z2))dB,
T<t<T 1
t 2
+E sup ([ (zrr—znaw,|
T<t<T g

which provides according to (13), (14) and (15)

(13)

(14)

(15)
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E sup K/ —K!J* >0, as n— o
T1<t<T

So, there exists a F;-measurable process K with value in R such that

E sup K/ -K/* — 0, as n- o.

T1<t<T

Obviously, {K;; T1 <t < T} is a non-decreasing and continuous process. Passing to the limit in (7)
and (ii) of (8), we have for any ¢t € [T, 7],

DY = &+ fs. Yo Z)ds + [ g(s.Y,.Z,)dB + [ dK, [ Z,dW.,
@Y =S
It remains to prove (4). For that, it follows from Saisho ([23], p. 465) that
T T
j (Y2 = S)1r, ndK? j (Ys - S)lrndK, P—a.s., as n- oo
0 0
Now, according to (iii) of (8), we obtain
T
(Ys — S5)dK, = 0.
T
Finally, we can deduce that the process (Y,Z,K) is solution of RBDSDE (3) starting at 7; with

horizon T. If T = 0, the proof of existence is finished. But if 71 # 0, we need to prove an existence
result the following equation:

DY =&+ [ fis, Yo Z)ds + [ (s, Yo, Z)dB, + [ dK, [ Z,dW,, ¢ € [0,T1],
(i)Y, > S, te[0,Th], (16)

(i) [ (Y, - S)dK, = 0.

Repeating the setup as above, we set for all # € [0,71], Y°(¢) = Z°(t) = 0 and for all n € N, we
define recursively the reflected BDSDEs

Y7 =&+ [ Mo vy z)ds + [ g, Vi 2B + [ dK2 - [ Zyaw,
(i) ¥ = S, (17)
Giii) [ (v - S)dK? = 0.

The same procedure used in the proof of Lemmas 2.1 and 2.2, leads for all t € [T,,7] and n, m > 1,
to

Ccr T
By - viP < et (A5 e 1) [ 7 p(s Byet - vt s,
t

and
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n |2 2 cT n n-1)2
BIY;P < i+ ce” | p(s By F)ds

where

2 _ cT 2 2 r 2 2
p? =ce’ 1+E[Yr, > +E sup [S)?+E | [|f(s,0,0)* +|g(5,0,0)|* ]ds |.
t

0<e<T
2
Letting M> = 2u3, we can also find 7> € [0, 71[ such that J.? p(s,M>)ds = % and
2

E|Y/? <My, n>1,te[T2,Th].

As before, we prove the existence of solution of RBDSDE (3) starting at 7> with horizon 7). If
T> = 0, the proof of the existence is complete. Otherwise, we repeat the above processes. Thus, we
obtain a sequence {7, i/, M,, p > 1} defined by

0<T,<Tp1<.<Ti1<Ty=T,

P _ . cT 2 2 T 2 2
@ =ce" 1+E[Yr, | +E sup S +E | [[f(s,0,0)]” +|g(s,0,0)|* ]ds |,
0<i<T !

P Tyt 0

M, =2y, and ij p(s,Mp)ds = U

Therefore, by iteration, we construct a solution of the RBDSDE (3) starting at 0 with horizon 7.
Finally, by the same argument used in [16], there exists a finite p > 1 such that 7, = 0. Thus, we
obtain the existence of the solution of RBDSDEs (3) on [0, 7.

Uniqueness. Let (Y,Z,K) and (Y',Z',K') belong in £2([0, 7]) be two solutions of the RBDSDE (3).
By virtue of [t6’s formula, we have for any 6 > 0

T T
EIY, - YiPe” + 0B [ |Y, - YiPe¥ds + B | 1Z, - ZiPe%ds
t t
T T
= 2B [ (¥, - YO (s, 0. Z,) = fis, Yo, Z))e%ds + 2B [ (¥, - Yi)e® (K., - dK.)
t t
T
+B [ 120,75, Z) - g(s, Y, Z0) e ds.
t

Since LT(YS - Y)e"(dK; - dK;) <0, it follows from (H1), (H4) and Young’s inequality
2ab < +a* + 0b* that

T
E|Y, - Y2 + (1 —a - %C)EJ. Z, — Z.2ebds
t
1 r _ y1(2) 05
< (§+1)B] pls.l¥s - YiP)erds.

Choosing 6 = 25, we get for all 7 € [0, 7],
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T
B|Y, - Y2 + PTan \Z, — Z.2ds
t

T
<t (524 DE[ p.lY, - Vi) (18)
t

Therefore

2CT T
BIY, - Y} < et (A& 4 1) [ p(s BlY, - ViP)ds.
t

In view of the comparison Theorem for ODE, we have
E|Yt_ Y;|2 < r(t)a Vite [OaT]a

where 7(¢) is the maximum left shift solution of the following equation:

21,
u' = —ela (5% +1)p(tu);
w(T) = 0.

By virtue of (H3), #(t) = 0, ¢t € [0,7]. Hence, Y, = Y}, a.s., for any ¢ € [0, T]. It then follows from
(18) that Z, = Z;, a.s., for any ¢ € [0, 7]. On the other hand, since

t
Ki—K,=Yy-Yy— (Y, -7} —j (s, Y5, Zs) = f(s, Y5, Z))ds
0
t — t
— | (g5, Y5,Z,) — (5, Y1, Z0)dBs + | (Z, - ZD)aWs, t € [0,T],
0 0
we have, K, = K}, a.s., for any ¢ € [0, 7], which end the proof. |
2.3. Comparison principle for RBDSDEs

Let (£1,/1,8") and (&2,7%,5%) be two set of data, each one satisfying the conditions of Theorem
2.1, and suppose additionally the following
(H6)
(i) E' < &2 as.,
(i) 1, Y, Z) < P, Y, Z) or f1(8,Y2,22) < f2(1,Y2,72), a.s., for a.e. t € [0,T],
(iii) S} < 82, a.s., fora.e. t € [0,7],
where (Y',Z',K") is a solution of RBSDE with data (¢',/1,S') and (Y?,Z2,K?) is a solution of
RBSDE with data (£2,/2,5?). Then we have the following comparison theorem.

Theorem 2.2. Assume the conditions of Theorem 2.1 and (H6) hold. Then Y} < Y? a.s. V t € [0,T].
Proof. We shall assume that f1(¢,Y!,Z)) <f*(t,Y},Z}), as., ae. te[0,7], and denote

Y=Y -Y?, Z,=Z7Z'-7? and K = K' — K% Applying Ito6 formula to |Y;|?, and taking the
expectation, we have
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B[ W+ [ 1 2005 |
= B[ 1€ - &P 2 [ T Y2 — s VL ZD)ds
#2[ TR+ [ 1 la, Y2 — gt V2. Z2)Ps |
Since on {Y} > Y?}, Y} > Y? > §? > S}, we have
| tTY;dT(S <-| tTY;dKz <0.
Assume now that (H6) in the statement applies to f'and g. Then
B[ TP+ [ gy 22 |
< [[ TG 6120~ 5. 72.20)ds + [ 15018065, 72,2) — (s, V1, ZD)Pds | (19)

On the other hand, using (H3) and the basic inequality 2ab < da® + %bz we get
T T - T -
J. e/,tsYI(f‘(S, Y;,Zé)_f(s, Y§DZ§))dS = 5I e‘uS|Y;r|2dS+ %J‘ e‘usp(S9|YS|2)1{Y_S>O}dS
t t t

c [T g2
+ 3 J'[ eﬁS|ZS| 1{7S>0>dS
T T
<8&| em|YiPds+ L | e*p(s,|Yi*)ds
<8 ] ewlTiPds+ & [ e p(s TP)

C T 7 12
+ L j[ eP|Z,2ds, (20)
and

T
[ 10 enlss,12,22) ~ g5, 1), ZD)Pds
r s Vv |12 r S|77 |2
< jt e p(s, [T rrsgpds + [ e(Z1 550, ds

T
< [ emp(s.[Ti)ds + a [ em(Z,[ds. Q1)
t

Putting (20)-(21) in (19) and since 0 < a < 1, we get
T T
ut|yt2 _ us|yt|2 PV ) A us|yt|2
B(e (Y P) + (u S)E(J'l ehs[Y7| ds) + (1 a S)E(j[ ehs[Y7| ds)

< (% + 1)E(Ije“sp(s,|?:|2)ds).

Finally choosing pt > 0 and 6 > O suchthat u—6 > Oand 1 —a — % > 0, we have
- T -
BT = CE( [ emp(sTiP)ds )
t

which by using Fubini’s theorem and Jensen’s inequality leads to
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B(T;P) = €[ pls, BAT))ds

Using the same argument as in the proof of uniqueness, we get that E(|Y;|?) = 0 and hence ¥; = 0
which implies that ¥} < Y2, [ |

3. Obstacle Problem for a Nonlinear Parabolic SPDEs With
Non-Lipschitzian Coefficients

The goal of this section, is to derive existence of stochastic viscosity solution to class of reflected
stochastic PDEs called "obstacle problem" for SPDE. Roughly speaking, SPDEs is of the form Let us
consider the following related obstacle problem for a parabolic SPDE

min{u(t,x) —h(t,x) , %(t,x) + Lu(t,x) + f{t,x,u(t,x), (c*Du)(t,x))
SPDEU#h) +g(z,x,u(t,x))]§_,}, (t.x) € [0.T] x RY, (22)
u(T,x) = I(x), x e RY.

where, B, = dB,/dt and L is a second order differential operator defined by

d d
_ 1 5,02 0
L= > ,»1-21(00 )i o +;b, e

Our method is fully probabilistic and used reflected BDSDEs studied in the previous sections and is
done when data I:RY >R, f:Qx[0,T]xRIxR xRY >R ,
g: QU x[0,T]xRIxR - Rland% : Q; x[0,7] x R - R satisfy the following Assumptions.

(A1) [ is Lipschitz continuous with the common Lipschitz constant C,
(A2) & is continuous such that, |4(z,x)|< C(1 + [x?), (t,x) € [0,7] x R? and A(T,x) < I(x),
(A3) for any (02,7,z) € Qs x Rx R?%and ¢ € [0,T], x1,x2 € xRY,

Jf(t’xlsyaz) —f(t,xZ,y,Z)| < C|X1 —X2|,

(Ad) g € CY([0,7] x RY x R;RY)
(A5) for all (y1,z1), (v2,22) € RxR% ¢t € [0,T] and x € RY,

Jf(taxaylazl) _ﬂtax7y2az2)|2 < p(t7 lyl _y2|2) + C|Zl _Z2|2
[f2,0,y,0)[< o(2) + Cbyl, with ¢(.) € M?(F,[0,7])

where C > 0 is a constants and p : [0,7] x R* - R™ satisfies:
(1) for fixed ¢t € [0,7], p(¢,.) is concave and non-decreasing such that p(z,0) = 0.

(if) for fixed u, || p(t,u)dt < +o0
(i11) for any M > 0, the following ODE



31 Y. REN,J. M. OWO, and A. AMAN

u' ~Mp(t,u)
u(T) 0

has a unique solution u(¢) = 0, ¢ < [0, 7],

In addition, we will consider the following. For each ¢ > 0, we consider F' = {F.} <;<r defined by
Fi=FIk @ FBr and M§; denote the set of all F”-stopping times 7 such that 0 <7 < T,
[P, —almost surely. For generic Euclidean spaces £ and E, we introduce the following vector spaces
of functions:

o C*"([0,T] x E;E1) design the space of all functions defined on [0, 7] x E with values in E, which

are k— times continuously differentiable in ¢ and n — times continuously differentiable in x and
CEn(10,T] x E; E1) denotes the subspace of C¥1([0, T] x E; E,) which contains all uniformly bounded
partial derivatives functions;

e For any sub ¢ —field G = F%, C*(G,[0,T] x E;E)), (resp. C&"(G,[0,T] x E;E,) stands for the

space of all random variables with values in C**([0, T] x E; E}), (resp. C5"([0,T] x E; E;) which are
G ® B([0,T] x E) —measurable;

o Ck1(FB,[0,T] x E;E1), (resp. CE"(FB,[0,7T]xE;E;) is the space of random fields
@ € Ck(FB,[0,T] x E;E1), (resp. Ck"(FE,[0,T] x E;E1) such that for any x € E, the mapping
(0?,1) » @(w1,t,x) is F8 —progressively measurable.

e For any sub ¢ —field G < F%, LSC([0,T] x E;E;) (resp. USC([0,T] x E;E,)) designs the space of

all lower (resp. upper) semi continuous functions defined on [0, 7] x E with values in E;
o LSC(G,[0,T] x E;Ev), (resp. USC(G,[0,T] x E;E;) stands for all random variables with values in

LSC([0,T] x E;Ey), (resp. USC([0, T] x E; E1) which are G ® B([0, 7] x E) —measurable;
e LSC(F2,[0,T] x E;E), (resp. USC(F2,[0,T] x E;E,) denotes the space of random fields

@ € LSC(FE,[0,T] x E;Ey), (resp. USC(FE,[0,T] x E;E;) such that for any x € E, the mapping
(w2,8) » @(wa,t,x) is F® —progressively measurable.
e For any sub o —field G < F%, and for any p > 0, L”(G,E) design the space of G —measurable

random variables & with values in E such that E|§]? < oo.
Furthermore, for any (¢,x,y) € [0,7] x RY xR, we denote D =D, = (==,...,->), D, =

_0_ 0
oxy > ? Oxq oy’

D; =2, and Dy, = (6)2”)6!.)1,
Then we note that

JE The meaning of D,, and D,, is then self-explanatory.

COOF®,[0,7] x B3 E1) = LSC(F?,[0,T] x E;E1) NUSC(F?,[0,T] x ESE).

3.1. Notion of stochastic viscosity solution

A solution of the obstacle problem for SPDEs (f,g,4,/) is a random field
u: Q,x[0,7] x R? - R which satisfies (22). More precisely, in this section, we will consider the
solution of SPDE (22) with data (f,g,4,/) in the stochastic viscosity sense, inspired by the works of
Buckdahn and Ma [5, 6] and B. Djehiche, N’zi and Owo [11]. To this end, we define the process
n € C%%0([0,7] x RY x R;R) as the solution to the following SDE,
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T
nxy) =+ 5 [ (g.Dg)s.xn(s.x.5))ds
a —
+ [ (elsxn(s.x.9)).dBy), 0<1<T.
t

Under condition (A4), the mapping y ~ n(t,x,y) is a diffeomorphism for all (¢,x), P» —a.s. such
that n € C*22(F2,[0,7] x R? x R;R). Let £(¢,x,y) denotes the y —inverse of 7n(z,x,y). Then since
&(t,x,n(t,x,y)) = yone can show that, [5, 6],

T —
e(t,x,y) =y-— J.t<Dy8(s,x,y),g(s,x,y) odBs), 0<t<T.

Furthermore, if v (t,x) = n(t,x,0(t,x)), for (¢,x) € [0,T] x R?, then y € C*?(F? [0,T] x R%;R) if
and only if ¢ € C*?(F5,[0,T] x RY;R), for p = 0,1,2. Next in order to simplify the notation, we set

Arg(w(t,x)) = —Ly(t,x) = flt,x,p(£,x),0" (£, x) Dy (1,x)) + %(g,Dngt,x,V/(t,X))-
We now give the definition of stochastic viscosity solution of the reflected SPDE(f, g, 4,/).

Definition 3.1. (¢) A random field u € LSC(F2,[0,T] x R%;R) is said to be a stochastic viscosity
subsolution of SPDE(f,g,h,l) if u(T,x) <I(x), for all x € RY% and if for any stopping time
T € MG, any state variable & € LO(F%,R7), and any random field ¢ € C'*(FB,[0,T] x R%;R)

such that, for P, —almost all @, € {0 < 7 < T}, it holds
u(@2,4,x) = y(02,4,x) < 0 = u(z(w2),5(02)) -y (7(02),5(02)),

for all (z,x) in a neighborhood of (7(w»),{(®2)), where y(z,x) 2 n(t,x,p(t,x)), then we have,
Py —a.s. on{0 < 7 < T},

min(“(raé) - h(Taé) > Aﬁg(l//(fa 5)) _Dy‘//('[a 5)DKP(T,§)> S Oa (23)

(b) A random field u € USC(F?,[0,T] x R?;R) is said to be a stochastic viscosity supersolution of

SPDE(f,g,h,[) if u(T,x) > I(x), for all x € R?; and if for any stopping time 7 € M§,, any state
variable & € LO(F2,RY), and any random field ¢ € C“*(F2,[0,7] x R%;R) such that, for

P, —almost all w, € {0 < 7 < T}, it holds
u(w2,4,x) = y(w2,4,x) > 0 = u(r(02),5(w2)) - y(r(w2),é(02)),
for all (#,x) in a neighborhood of ((w2), £(w,)), then we have, P2 — a.s. on {0 < 7 < T},
min(u(z,&) = h(z,8) , Are(w(1,8) =Dy (z,6)Dip(7,8)) = 0, (24)

(¢) A random field u is said to be a stochastic viscosity solution of SPDE(f,g, A,l) if

u € CO°F2,[0,T] x R%;R) and is both a stochastic viscosity subsolution and supersolution.

Remark 3.1. If, in SPDE(f,g,4,[), g = 0, then for all (¢,x,y), n(t,x,y) =y and w(t,x) = ¢(t,x).
Hence, if f'is deterministic, the above definition coincides with the deterministic case (El Karoui et
al. [14]). Thus, any stochastic viscosity (sub- or super-) solution is viewed as a (deterministic)
viscosity (sub- or super-) solution for each fixed w, € {0 < 7 < T}, modulo the F2 — measurability
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requirement of the test function ¢.
3.2. Existence of stochastic viscosity solution

This subsection is devoted to prove the existence of stochastic viscosity solutions to obstacle
problem for SPDE (22) using the result of Section 2. Before giving the main result, let state the
Markovian framework of decoupled forward-backward SDE. For b : R? > R? 6;:R? > R™ are
uniformly Lipschitz continuous (with a common Lipschitz constant C > 0), let consider this needed
progressive SDE and the following regularity result associated to it (see the theory of SDEs, for more
detail): for each (¢,x) € [0, 7] x R?,

X =x+ [ e+ [ o)W, s € [1.1) (25)
t t

Proposition 3.1. There exists a constant C > 0 such that for all t,t' € [0,T] and x,x' € RY.

]E( sup | X% — X1 |p> < C(|t = 172 + |x — x'P). (26)

0<s<T

Next, let us consider the RBDSDE (/(X%"),f,g,h):

- -
(D) Ve = 1) + [ fon X, Ve, Z6)dr + [ g, X, Vi) B,

F K -Ke = [ zaw,, s e [11),
N ) YE A, selnTl, 27)
(iii) {K%*} is increasing and continuous such that K§* =

and |1 (VP — h(r,. Xi))dKE* = 0.

N

According to Theorem 2.1 of sections 2, for each (¢,x) € [0,7] x R¢, the RBDSDE (27) has a unique
solution (Y*,Z% K*) e £*([t,T]). We can extend this solution to [0,] by choosing
Y =Y 7 = 0, K7 = K7*. Furthermore, we state a proposition that follows.

Proposition 3.2. Let u : Q; x [0,7] x R? - R be a random field defined by
u(t,x) 2 Y, forall (4,x) € [0,7] x RY. (28)
Then, u € C*(FB,[0,T] x R%;R).

Proof. Forn € N,let
[ (txp,z) = inf {ftx,y.2) +nly—ul},

ne Q
and
f.(t,x,y,z) = sup {f(t,x,y,z) —-nly- u|}.
neQ

Since f'is continuous, with linear growth by (AS5), it follows from [13] or [14] that for all n > C and
(taxayaz)a(tiaxiayiazi) € [OaTJ X Rd x R x Rdai = 172>
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() f (tx,y,2) < fit,x,p,2) < f,(t,x,y,2),

(i) f (¢,x,y,z) is non-decreasing in n andf (,x,y,z) is non-increasing in n .
Moreover, taking ¢ as]—’n or j_‘n leads to

(iid) |p(2,x,,2)| < @1+ C(x| + | + [2]),

(V) [¢(1,x1,91,2) — ¢(£,x2,y2,2)[ < n (o1 = x2[ + 1 = »2)),

V) Ip(t.x,y,21) = 9(t,x.0,22) < Clz1 —2af’,

vi) If Wu,z0) = (,2),then ¢(¢,x,yn,2,) - ft,X,y,2) aSn — 0.

According to assumptions (iv) and (v) it follows from the works [4] or [1], without the Neumann
term, for each (t,x) € [0,7]xR¢ and every n > C,the RBDSDE associated to
(l(X’f"), £ g,h),respective to (l(X’f"), I g,h), has a unique solution (Y™, Z" K",
respective to (Y™, Z"" K"™"). Moreover, it follows again from [4] that (Y>*",Z%" K“"),
respective to (Y™, Z"" K"™"), converges to the minimal ( respectively maximal) solution of the
RBSDSDE (27).

By setting
ﬁn(t,X) = Y;J,", (29)
u,(t,x) = Y™, (30)

it follows also from [2] that @, (respectively u,) belongs in C®°(F5 [0,7] x RY;R) . On another
note, according to (ii) above and comparison Theorem 3.2, of [4], the sequence of random field 7,
(respectively u,) is nondecreasing (resp. non-increasing). Moreover, for (¢,x) € [0,7] x R¢ @, (resp.
u,) converge to u(t,x) = Y;* (resp. u(t,x) = Y** ) which is lower semi-continuous (resp. upper
semi-continuous). Since in subsection 2.2 we prove that RBDSDE (3) has a unique solution
(Y=,Z,K™),then Y»* = ¥* = Y. Finally # = u = u is both lower and upper semi-continuous,
ie.ue COFE [0,T] x R%R). |

The main result of this section is the following.

Theorem 3.1. Under conditions (41)-(A45), the random field u € C*°(F2,[0,T] x R?;R) defined by
(28) is a stochastic viscosity solution for the SPDE (22).

Proof. Since for all (¢,x) € [0,7] x R u(t,x) = Y**, we have u(T,x) = [(x). Moreover for all
(Tsé) € Mg,T XLO(]_—fisq)s

u(r,&) = Y¥° > h(1,&) Pr—a.s. (31)

Now, it remains to show that u satisfies (23) and (24).

For this purpose, For every n > C, let define u,, : 2, x [0,7] x R? » R by (30). Then, with the
same argument as above, the sequence of random field u, converges to random field u defined by
(28). Moreover, using Theorem 3.1 (without the Neumann term) in Aman et al., [2], u, is a
stochastic viscosity solution of the parabolic SPDE associated to the data (fn g, h 1),

-
min{t_tn(t,x) - h(t,x) , 65utn (t,x) + Lu,(t,x) + [ (t,x,u,(t,x), (0" Du,)(#,x))
) Fenu, (0B f,  (63) € (0.7 x R, Gy
L u,(T,x) =I(x). xeRY

For w, € Q, that is fixed such that
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u,(@2,1,x) > u(wz,1,x) as n — +oo, (33)
let us consider (7,&,¢) € M§ x LO(FE,R7) x C"*(F2,[0,7] x R%;R) such that 0 < 7(w2) < T
u(w2,4,x) — y(w2,4,x) < 0 = u(1(02),5(02)) —y(r(02),5(®2)),

for all (z,x) in a neighborhood V(7(®2),&(w2)) of (7(w2),E(w2)), where w(t,x) = n(t,x,p(t,x)).
Furthermore, from Example 8.2 in El Karoui et al. (1997) and Lemma 6.1 in Crandall et al. (1992),
there exists a sequence (7;(®2),&(®2),0;(®2))1 € [0,T] x R4 x CH2([0,7] x R%;R) such that
nj — 4o, 7;(w2) — v (02), §j(w2) = & (02), pj(w2) — ¢ (w2)and

u, (@2,8,x) = yj(@2,4,%) < u, (7;(02),8;(02)) - y;(7;(02),5;(w2)),

for all (#,x) in a neighborhood V(7;(@2),¢j(®2)) < V(r(®2),E(w2)) and a suitable subsequence
()21, where y;(2,x) = n(t,x,9,(1,x)).

By (33) and (31), it follows that for j large enough u,, (7;,&;) — 4(7,§;) 2 0 P2 —a.s.
Now, using the fact that u, is a stochastic viscosity solution for SPDE(/_;_, g, h,0), we obtain
Py —a.s.,on{0 < 7; < T}, j

Ar, «Wi(76))) = Dyj(T;,6)Di0i(1),65) < 0. (34)

nj

From the properties of 1, v (z,&,) = 1(z;,&7,9;(1),&))) converges to y(1.&) = 1(z,&,p(1,£)).
Moreover, from the properties of f ,
L,

Afnj,g(l//j(fj,ﬁj)) = ~Lyi(76) — 1, (@65 vi(7, ), 07 (2, §)Davr(2),65))
+ 52 D,8)(T1E)),
converges to
AW (7,8)) = —Ly(1,8) - fz,8,9(7.8),0"(7,O)Dxy(7,8)) + %(g,DngT,é)-

Hence, taking the limit as j — oo in (34), we obtain

Ase(w(1,8)) — Dyy(z,E)Dip(z,&) < 0.

and we get that u is a stochastic viscosity subsolution for the SPDE(f, g, /,/). Similarly, we prove that
u is a stochastic viscosity supersolution for the SPDE(f, g, 4,[). So we conclude that u is a stochastic
viscosity solution for the SPDE (f,g,4,1). |

Remark 3.2. Replace u,, by %,, we obtain with some adaptation the same conclusion.
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