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Abstract. This paper presents a new numerical approach for solving a class of stochastic
partial differential systems with additive noise on overlapping subdomains. The domain
decomposition method, the deterministic method of lines and the barycentric interpolation
method are combined. In addition to these three methods, the stochastic Itô-Taylor family
schemes for solving stochastic advection-diffusion-reaction problems is implemented. The
solution of the stochastic system is then carried out by collecting interior and interface
solutions. Finally, computational results on two dimensional overlapped subdomains with
nonlinear boundaries are simulated.
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1. Motivation

The Domain decomposition methods (DDM) for solving evolutionary partial differential
equations (PDEs) was first introduced by Schwarz [18]. This classical alternating Schwarz
method (ASM) is used to approximate PDEs solutions on an overlapped circle and rectangle.
Where the used scheme solves the problem on the circle with boundary condition taken from
the interior of the rectangle and solves the PDEs on the rectangle with boundary condition
taken from the interior of the circle. The DDM techniques deal in general with solving
subproblems on subdomains instead of solving the initial problem on a computational domain
without decomposition. The solution of these subproblems is qualitatively or quantitatively
simpler than the original problem [19, 20, 21]. In the framework of numerical analysis for
PDEs, the DDM solves a boundary value problem by splitting it into smaller boundary value
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problems on several subdomains. Generally, these problems on the subdomains are
independent, which makes the domain decomposition methods suitable for parallel computing
[3, 13, 14, 15]. These techniques are typically used as preconditioners for Krylov space
iterative methods, such as the conjugate gradient method or Generalized minimal residual
method (GMRES) [24, 25]. Later, Lions in [9, 10] extends the ASM to more suitable
algorithm. He proposed an interesting additive Schwarz method.

In this work, we transform the Schwarz algorithm for solving stochastic partial differential
equations (SPDEs) on overlapping subdomains into an equivalent problem on non-overlapping
subdomains. Where, the concentration on the overlapping region, considered as new function,
is a consequence of chemical and physical transformation of those from the non-overlapped
subdomains. Thereafter, we solve the system of SPDEs with additive noise using a class of
stochastic Itô-Taylor (SIT) schemes [2, 4, 8, 7, 16], combined with the deterministic the
method of lines (MOL) [22, 26, 17, 23] and the barycentric interpolation method (BIM) for
approximating the interface solutions [27]. In the present work, similar to the parallel Schwarz
Waveform Relaxation Algorithm presented in [11, 12], we analytically construct a new
numerical approach for approximating the non-overlapping interface of the overlapping region
of the computational domain.

This paper is organized as follows: In Section 2, we introduce overlapping stochastic
problem and the corresponding non-overlapping equivalent one. Thereafter, we suggest an
algorithm for interpolating the interface solution. In Section 3, we construct the Itô-Taylor
family schemes for solving the equivalent system of systems. In Section 4, we present the
time-space integration of the problem. While, in Section 5, we accurate our method using
several tests. We perform geometrical and numerical experiments on two dimensional
subdomains with nonlinear boundaries. Finally, comments and some concluding remarks are
presented in Section 6.

2. Modeling of SPDS on Decomposed Subdomain

In the following section, we present a stochastic overlapped and alternating Schwarz
problem. Thereafter, we transform it into a non-overlapping parallel problem. Because of the
reactions and actions of species inside the common region, the solution of the PDEs problem
on the overlapped interface lead to the introduction of a new function. Moreover, we set up
some advantages of the proposed transformation.

2.1. SPDS on overlapping subdomains
Consider a probability space ,F t,P, where  denotes the space of outcomes. The

sequence Ft is a family of right continuous filtrations associated with , for all t ∈ 0,T with
T  0. P is the probability measure on the right continuous F t. Moreover, denote by
H  L22, the separable real Hilbert space of square integrable real valued functions
defined from 2 to  with scalar product and usual norms. For two overlapping subdomains
D1 and D2 such that D1 ∩ D2  Γ1,2, we suppose that Us is the time-space stochastic processes
defined as a mapping Us : 0,T  Ds    , for s  1,2. Denote by U1,U2 the exact
solution of the following stochastic partial differential system:
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Ut
1  ∇  d1ΔU 1 − a1  ∇U1  11, on D1,

Ut
2  ∇  d1ΔU 2 − a2  ∇U 2  22, on D2,

1

where, for s  1,2 the processes s are two independent white noises. The parameters s are
two standard correlations, ds are a constant diffusion coefficients and as represent a constant
advection parameters. the time-space processes Us could be interpreted as densities of
interacting species X and Y respectively, see for instance similar works in [1, 22]. In order to
numerically solve the problem (1), other factors should be be taken in consideration. Namely,
the evolution of the species X and Y on the overlapped subdomain Γ1,2. Therefore, we suggest
the following classical chemical reactions:

X  tX  1 − tX, 2

Y  1 − tY  tY, 3

tX  1 − tY  XY, 4
where for all t ∈ 0,T,  t is chosen as a deterministic or as a random variable with outcomes
in the real interval 0,1. The reactions (2) and (3) refer to the molecular decomposition, where
larger molecule splits into smaller parts. The reaction (4) is of types bimolecular reactions. For
instance when two molecules  tX and 1 −  tY collide and react with each other. Hence, let us
denotes by U3 the density function of the new chemical product XY on the overlapping
subdomain Γ1,2. It satisfies the following physical and chemical splitting transformation:

U1  1 − tU1 on D1 ∖ Γ1,2,

U2  tU2 on D2 ∖ Γ1,2,

tU1  1 − tU2  U3 on Γ1,2.

5

Therefore, a new numerical approach is required for solving the SPDS (1) on D together with
(5) on the overlapping subdomain Γ1,2. For the time-space integration, we use the parallel
domain decomposition algorithm (DDA) and we apply the method of lines (MOL) to transform
the SPDS (1) into a semi-linear system of systems with random entries, see [22, 26]. We solve
these systems locally on D1 ∖ Γ1,2, on D2 ∖ Γ1,2 and we update the solution on the boundary of
the interface Γ1,2. For continuity purposes of the solution on all common interfaces Γu and Γd,
see Figure 1, we force  t to be temporal and spatial function.

2.2. Non-overlapping equivalent problem
In this section, we introduce an non-overlapping equivalent problem for solving the

overlapping SPDS (1) together with (5). In fact, to deal with this problem, we have to solve U1

on D1 ∖ Γ1,2, U2 on D2 ∖ Γ1,2 and solving a new SPDE problem for U3 on Γ1,2. Unlike the
alternating deterministic Schwarz algorithm [18, 9, 10], we solve the system (1) using the
parallel Schwarz scheme, by introducing the new function U3 and taking in consideration the
changes inside the overlapping subdomain. Hence, due to the reactional changes on the
overlapping region, the new reactional equation is given by
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Ut
3  ∇  fd1,d2∇U3 − ga1,a2  ∇U3  11  22, 6

where the variable  t have outcomes in 0,1, the diffusion coefficient d3  fd1,d2 is a
function of d1 and d2, the advection coefficient a3  ga1,a2 is a function of the advection a1
and a2. Finally, the resulting overlapping equivalent problem has the form:

Ut
1  d1ΔU1 − a1∇U1  11 on D1 ∖ Γ1,2,

Ut
2  d2ΔU2 − a2∇U2  22 on D2 ∖ Γ1,2,

Ut
3  d3ΔU3 − a3∇U3  11  22 on Γ1,2.

7

In order to complete the transformation above to numerically solve the original domain
decomposition problem, we have to approximate the local solutions U1, U2 and U3 on
∂Γ1,2  Γu  Γd, see Figure 1.

(a) D1 ∖ Γ1,2 (b) D2 ∖ Γ1,2 (c) Interface Γ1,2
Figure 1: Computational domains.

The interface solution should satisfy the following boundary conditions:

w1,3  ut
3  ut

1 on Γd,

w2,3  ut
3  ut

2 on Γu,
8

where the interface solutions w1,3 and w2,3 are approximated using the barycentric
interpolation method (13) presented in the next section. For more details, we also refer to [27].

2.3. Interpolation of the interface solution
In order to construct the interface solutions w, we use the FTCS-BIM scheme, see [5, 6,

27]. For the non-overlapping interfaces Γu and Γd and a given time FTCS discretization of the
problem (8), we define the neighbors grid-points index set Ni,j

m as
Ni,j

m : i  a, j  b| |a| |b| m;a,b ∈ Z . 9

We define, the coefficients set i∗,j∗ ∈ Ci,j ⊂0,1 as

Ci,j : 1 − 2
4 i2,j−2

, 1 − 2
4 i2,j2

, 
2 i1,j−1

, 
2 

−
i1,j1

,

1 − 2
4 i−2,j−2

, 1 − 2
4 i−2,j2

, 
2 


i−1,j−1

, 
2 i−1,j1

.

and satisfies the following convex combination
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∑
 i∗,j∗∈Ci,j

i∗,j∗  ∑
i∗,j∗∈Ni,j

1 Ni,j
2

i∗,j∗  1. 10

where the notation ,  and − stand for
  2dΔt

Δx2
, −  1 − a

2d Δx, and   1  a
2d Δx. 11

For more details about the construction of this method, we refer to [27].
Under appropriate conditions on initial solution U0 in L2D, there exist a unique solution

UDD in C0,T,L2D ∩ L20,T;H0
1D, such that the DDM solution

UDDx, t : wx, t ∂ Γ1,2
 ∑

s 1

3
Usx, t Ds ∖∂Ds

, 12

where Us is the solution of the sub-problem s for s  1,2,3 and the mapping wx, t is the
whole interface solution. This non-overlapping interface solution is recursively computed as
updated function depending on the values of U at t − Δt, which is given by

wxi,j :
UDDxi,j, 0 for t  0,

∑
i∗,j∗∈Ni,j

1 Ni,j
2

i∗,j∗UDDxi∗,j∗ , t − Δt for t  0, 13

where

UDDxi,j, 0  Usxi,j, 0.

The initial and Dirichlet boundary conditions are

Usx, 0  Ux, 0| Ds for s  1,2,3.
Usx, t  0 for x, t ∈ ∂D  0,T.

14

Consider the deterministic case, where i.e. 1  2  0. In order to solve the equivalent
problem (8) on non-overlapping subdomains, we assume that the following advection and
diffusion coefficients hold for any interface point xi,j ∈ Γu or Γd:

d3 : 1
2 d1  d2 and a3 : 1

2 a1  a2.

Thus, we have the following convergence theorem

Theorem 2.1. For xi,j ∈ Γu or Γd, if 4d3Δt  Δx2, Δx  2d3/a3, then there exists a sequence
 i,jk such that following two step Barycentric scheme:

uxi,j, tn1 ≈ ui,j
n1  ∑

i∗,j∗∈Ni,j
1 Ni,j

2

i∗,j∗UDDxi∗,j∗ , tn, 15

approximates uxi,j, tn1 in the problem (1) and in the system (8) with time-space convergence
order OΔt  Δx2.

For the proof, we refer the reader to [27].
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3. Itô-Taylor Schemes for SPDEs on Overlapping
Subdomains

In this section, we recall the construction of the Itô-Taylor scheme for integrating
stochastic differential systems driven by at most two uncorrelated noises. First, we set up some
classical definitions and notations, for more details see [27]:
The component set is an ordered subset, denoted by F2

0. It contains the whole numbers 0, 1 and
2:

F2
0 : 0  F2  0  1,2  0,1,2.

The multi-index is an ℓ-tuple, denoted by   j1,…, jl, where ji ∈ F2
0 and 1 ≤ i ≤ l.

The length of a multi-index is the number of components of , denoted by ℓ : ℓ.
The zeros of a multi–index is the number of zero components of , denoted by n : n.
The multi–index set is the set of all multi-indices with respect to F2, represented by

M2  l1
 F2

0l  v,
where v refers to the empty multi-index with size zero.
The drop operator (-) is defined for a multi-index   j1, j2,…, jl ∈ M2, such that

− : j2,…, jl and  −: j1, j2,…, jl−1.

Example 1. The following examples makes clear the definition above:
∙ For   1,0, we have ℓ  2 and n  1.
∙ For   1,0,1, we have ℓ  3 and n  1.
∙ For   1,0,2, we have −  0,2 and  − 1,0.
∙ If ℓ  l  1 then −   − v and l−  l −  0.

Throughout the following section, all stochastic processes are defined on a probability
space ,Ft,P with right continuous augmented filtration F t, t ∈ 0,T.

Definition 3. 1. Denote by H, the set of stochastic processes ftt≥0, which are progressively
adapted to the associated filtration F tt≥0, right continuous and the left limit exists. We
define the sets Hv,H0,H1 of essentially bounded, integrable and square integrable processes
as
(i) Hv : f ∈ H : ∀ t ≥ t0 |ft,w|  a. s. ,
(ii) H0 : f ∈ H : ∀ t ≥ t0 

t0

t |fs,w|ds   a. s. ,

(iii)Hj : f ∈ H : ∀ t ≥ t0 
t0

t |fs,w|2ds   a. s. , for j ∈ F2
0.

where the notation a. s. refers ’almost sure’ in the theory of stochastic calculus. Moreover, we
assume that the sets H1  Hj coincide, for all j ∈ F2

0. for more details, we refer to [7, 8].

Definition 3. 2. Consider   j1, j2,…, jl a multi-index and an m-dimensional Brownian
motion Wtt≥0. For f ∈ H, multiple Itô-integrals are defined per recursion as follows:
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If. t0,t :

ft, if l  0,


t0

t I−f. t0,sds, if l ≥ 1 and jl  0,


t0

t I−f. t0,sdWs
jl , if l ≥ 1 and jl ≥ 1.

Here H is defined per recursion as
H : f ∈ H : I−f. t0,. ∈ Hjl, 16

for jl ∈ F2 and l ≥ 2.

Example 2. We illustrate the Definition above in the following examples

I1,2f. t0,t  
t0

t 
t0

s
fzdWz

1dWs
2.

I1,2,0f. t0,t  
t0

t
I1,2f. 0,sds  

t0

t 
t0

s 
t0

s1
fs2dWs2

1 dWs1
2 ds.

I1,2,0,1f. t0,t  
t0

t
I1,2,0f. 0,sdWs

1.

For simplicity, we use the following notations I,t  I10,t and Wt
0  t.

In order to integrate the stochastic partial differential system (1), we first introduce the
Itô-Taylor scheme for differential systems of equations. Let Wtt∈t0,T be an m-dimensional
Brownian motion defined on a ,A2 with right continuous augmented filtration
F  Ftt∈0,T. Consider the following d-dimensional Itô process Xt : Xt

1,… ,Xt
d, which

satisfies the stochastic differential (17 driven by at most two noises

dWt
1,… ,dWt

m: dXt
i  ait,Xtdt ∑

j1

m
bi,jt,XtdWt

j, 17

where for all i  1,…,d, and j  1,…,m, the drift vector at
it∈0,T and the diffusion matrix

bt
i,jt∈0,T are F t adapted and satisfy 

0

T as
i ds   and 

0

T
bs

i,j2ds   a.s.
For any partition 0  t0  t1    tN  T of the time interval 0,T with step sizes

Δtn  tn1 − tn and maximum step-size Δ  maxnΔtn, let Yn
Δ be a numerical approximation of

the exact solution Xtn at a time point tn. We have to distinguish between the strong and the
weak convergence of Xtn , see [7, 8].

Definition 3. 3. We say that the Yn is a strong approximation of order   0.5,1,1.5,… if it
exists Kp,T  0 such that

Es

YnΔ : E|YNT

 − XT|p
1
p ≤ Kp,TΔ

 with limNT→Es

YnΔ  0, 18

and we said that Yn is a we approximation of order   1,2,3,… if it exists Kg,T  0 such that

Es

YnΔ : E|YNT

 − XT|p
1
p ≤ Kp,TΔ

 with limNT→Es

YnΔ  0, 19

where g any polynomial function and p is in general one or two. Moreover, we have to note
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that the numerical approximation above are given in L2.

In the following, we set clear the Itô-Taylor family scheme. We consider a regular function
f : d →  and suppose that the assumptions of the existence of the numerical solution given
in [7] are satisfied. Thus, the strong Itô-Taylor scheme of order   0.5, 1, 1.5, 2,… is given
by:

Y0  0,

Yn1  ∑
∈A

Iftn,Yntn,tn1
 Yn  ∑

∈A\v
Iftn,Yntn,tn1

, 20

where the multiple Itô-Integrals are given by definition 3.2, and A is given by
A   ∈ Mm| ℓ  n  2 or ℓ  n    0.5 . 21

For the weak approximation, we change the the index set A by A such that

A   ∈ Mm| ℓ ≤  . 22

Thus, the scheme (20) could be written as:
Y0  0,

Yn1  Yn  I0at,YnΔtn
 ∑

j1∈Fm
1

Ij1b
j1t,YnΔtn

23

 ∑
j1,j2∈Fm

2

Ij1,j2L
j1 bj2t,YnΔtn

24

 ∑
j1,0∈Fm

1 0
Ij1,0L

j1 at,YnΔtn

 ∑
0,j2∈0Fm

1

I0,j2L
0bj2t,YnΔtn

 I0,0L
0at,YnΔtn

 ∑
j1,j2,j3∈Fm

3

Ij1,j2,j3L
j1 Lj2 bj3t,YnΔtn

25

 ∑
jj1,j2,0∈Fm

2 0
Ij1,j2,0L

j1 Lj2 at,YnΔtn

 ∑
j1,0,j2∈Fm0Fm

Ij1,0,j3L
j1 L0bj3t,YnΔtn

 ∑
0,j2,j3∈0Fm

2

I0,j2,j3L
0Lj2 bj3t,YnΔtn

 ∑
j1,j2,j3,j4∈Fm

4

Ij1,j2,j3,j4L
j1 Lj2 Lj3 bj4t,YnΔtn

. 26

where the Euler Maruyama scheme is represented by (23), the Milstein (or Taylor order one) is
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(23)-(24), Taylor scheme of order 1.5 is represented by (23)-(25) and the Taylor scheme of
order 2.0 is represented by the (23)-(26), for i  1,… ,d and j  1,…,m the differential
operators Lj for j  0,1,… ,m are given by

L0  ∂
∂t  ∑

k 1

d
at
k ∂
∂x k  1

2 ∑
k, j 1

d
∑
j 1

m
bi,jbk,j ∂

∂x i ∂x k , 27

Lj  ∑
j 1

d
bi,j ∂
∂x i . 28

The Itô-Taylor schemes (23)-(26) correspond to the following multi-index sets: For   0 the
multi-index  has a no-length, therefore the main set is A0.0  v. The set A0.0 represents the
initial guess of the numerical scheme. If   0.5, then the length of the multi-index is at most
one. Hence, we obtain

A0.5  A0.0  0  Fm
1 , . 29

which leads to the Euler-Maruyama scheme. If   1, then the index set A1.0 corresponds to
the first order Itô-Taylor scheme (called also Milstein scheme)

A1.0  A0.5  Fm
2  A0.0  0  Fm

1  Fm
2 . 30

If   1.5, then index-set A1.5 is given by

A1.5  A1.0  0,0  0  Fm
1   Fm

1  0  Fm
3 . 31

If   2.0 the index-set A2.0 is given by

A2.0  A1.5  0  Fm
2   Fm

2  0  Fm
1  0  Fm

1   Fm
4 . 32

4. Time-Space Integration of SPDS on Overlapping
Interfaces

Consider a constant time step Δt of the time interval T  0,T and constant spatial steps
Δx  xi1 − xi  Δy  yj1 − yj, for i  1,… ,N and j  1,… ,M Thus, the FTCS
approximation of the solution of (1) is

dui,j
1 t  −2ui,j

1 t  
2 
−ui−1,j

1 t  
2 

ui1,j
1 t

 
2 
−ui,j−1

1 t  
2 

ui,j1
1 dt  11t,xi,j,dt ,

dui,j
2 t  −2ui,j

2  
2 
−ui−1,j

2 t  
2 

ui1,j
2 t

 
2 
−ui,j−1

2 t  
2 

ui,j1
2 t dt  22t,xi,j,dt , 33

where ui,j
s ≈ usxi,j, t  usxi,yj, t represents the numerical approximation of the exact
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solution us at the space-time point xi,yj, t ∈ D  T. The coefficients ,  and − are given
as


Δt  2d

Δx2 , −  1 − a
2d Δx, and   1  a

2d Δx. 34

The system (33) can be transformed into a multidimensional stochastic differential system of
the form, see similar works [22],

du1t  K1t,U1tdt  G1tdW1t, on D1,

du2t  K2t,U2tdt  G2tdW2t, on D2,
35

where the white noise stochastic processes st,x,  are supposed to be uncorrelated in time
and in space for all s  1,2, it yields

dst,x, :
dWst,x, if x ∈ Ds ⊆ D,
0 Otherwise,

Moreover, the white noise processes dWs is Hilbert-space valued random variable satisfying:

dWst,x, dWst,y,   2fx − ydt,

where s  1,2, x,y ∈ Ds and f is a smooth function. It should be stressed that, in the general
case, it is not required that the noises s to be independent and identically distributed.
Furthermore, the white noise or Brownian motion can be considered as a truncated
approximation of infinite dimensional Wiener process [4].

Our main interest is solving the system (35) numerically by taking in consideration the
overlapping interface Γ1,2. Therefore, we define the evolution of U1 and U2 as combined
solution U3, as suggested by the reactions (4). This resulting solution could be interpreted as
the outcome of chemical or biological reactions. Thus, we assume that there exist  t ∈ 0,1
such that

Ut
3   tUt

1  1 −  tUt
2 on Γ1,2. 36

Hence, the stochastic system could be written as

du1t  K1t,u1tdt  G1tdW1t on D1 ∖ Γ1,2,

du2t  K2t,u2tdt  G2tdW2t on D2 ∖ Γ1,2,

du3t  K3t,u3tdt  G1tdW1t  G2tdW2t on Γ1,2,

37

where Ki, Gi and Wi for i  1,2,3 are matrix resulting from a discretizating system using the
deterministic method of lines, see for more details [22, 27]. Furthermore, the system (37)
should be solved for u1 on D1 ∖ Γ1,2, u2 on D2 ∖ Γ1,2 and for u3 on Γ1,2 considering the
combination (36). However, the solution on the non overlapping interface ∂Γ1,2  Γd  Γu,
satisfies, the following continuity condition
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U1  U3 for x, t ∈ Γd  T,

U2  U3 for x, t ∈ Γu  T,
38

where the interface (38) will be interpolated using the Barycentric interpolation method given
by (13). It is important to note that integrating the iterated stochastic integrals I, for a
multi-index  does not need any approximation on D1 ∖ Γ1,2 and D2 ∖ Γ1,2 since the random
excitation desponds on one noise only, see the explicit construction in [27]. While in on the
common overlapped interface the double stochastic integral Ij1,j2, for j1 ≠ j2 needs to be
approximated using classical methods, see for instance [26].

5. Numerical Experiments

The main goal of our numerical tests, is analyzing the numerical behavior of the solution
on domains with an overlapped interface. We simulate the SPDS (1) together with (5) on D
showed in Figure 2. We restrict ourself to the problem in dimension two and for the error
measurement, we use the L2 grid norm:

‖u − uDD‖2  Δx ∑
i1

Nx

∑
j1

Nx

|ui,j − ui,j
DD|2

1/2

. 39

First, we consider the following cut functions:

fdx  −0.505 − 0.15e−15x−0.52 ; and fux  0.5  0.15e−15x−0.52 . 40

Thus, the computational subdomains are then given by:
(i) D : x  x,y ∈ Cx0, r| x − 1/22  y − 1/22 ≤ 1/4  Dx0, r.
(ii) D1 : x  x,y ∈ Dx0, r| x ≤ fux .
(iii) D2 : x  x,y ∈ Dx0, r| fdx ≤ x .
(iv) Γ1,2 : x  x,y ∈ Dx0, r|fdx ≤ x ≤ fux,
where Cx0, r is the circle with center x0  1/2,1/2 and radius r  1/2 and Dx0, r is the
corresponding Disc. The non-overlapping interfaces are given in the following set notation
(iii) Γu : x  x,y ∈ Γ1,2 y  fux .
(iv) Γd : x  x,y ∈ Γ1,2 y  fdx .

(a) Domain D (b) Subdomain D1 (c) Subdomain D2 (d) Γ1,2  D1 ∩ D2
Figure 2: Computational subdomains.
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where the boundary of the interface is given by ∂Γ1,2  Γd  Γu.
We simulate our result on the following computational domains under different initial

solutions and different choice of the advection and diffusion coefficients, we solve the
non-overlapping advection diffusion system (1), which is equivalent to the original problem
(1):

Ut
1  dΔU1  a∇U1 for x, t ∈ D1  T,

Ut
2  dΔU2  a∇U2 for x, t ∈ D2  T,

Ut
3  dΔU3  a∇U3 for x, t ∈ Γ1,2  T,

U1  U3 for x, t ∈ Γd  T,

U2  U3 for x, t ∈ Γu  T.

41

For all our simulation, we adjust the time-space stability condition using the Courant
Friedrichs Lewy condition Δt  0.95ΔtCFL, where ΔtCFL 

Δx2

4d .

5.1. TEST 1: Decoupling vs coupling of local solutions
In this test, we perform a geometrical accuracy test. We solve the problem (42) using the

coefficients dk  0.25 and ak  0.2, for k  1,2,3. We examine the decoupling behavior of
the three solutions by solving U1 on D1 ∖ Γ1,2, U2 on D2 ∖ Γ1,2, and U3 on Γ1,2:

P1 :

Ut
1  d1ΔU1  a1∇U1 for x, t ∈ D1  T,

Ut
2  d2ΔU2  a2∇U2 for x, t ∈ D2  T,

Ut
3  d3ΔU3  a3∇U3 for x, t ∈ Γ1,2  T.

42

We compare the geometrical behavior of the non-interpolated interface solution (ie w ≡ 0)

U1  U3  0 for x, t ∈ Γd  T,

U2  U3  0 for x, t ∈ Γu  T,
43

with the interpolated one (w ≠ 0)

U1  U3  w1,3 for x, t ∈ Γd  T,

U2  U3  w2,3 for x, t ∈ Γu  T.
44

The initial solutions are the following normal-like concentrations:

U1x, 0  exp − 0.15 x − 0.52  y − 0.22

2.10−4
on D1 ∖ Γ1,2,

U2x, 0  exp − 0.15 x − 0.52  y − 0.52

2.10−4
on D2 ∖ Γ1,2,

U3x, 0  exp − 0.15 x − 0.52  y − 0.82

2.10−4
on Γ1,2.

45
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The Dirichlet boundary conditions for the three solutions are:

P2 :

U1x, t  0 for all x, t ∈ ∂D1 ∖ Γ1,2  0,T,

U2x, t  0 for all x, t ∈ ∂D2 ∖ Γ1,2  0,T,

U3x, t  0 for all x, t ∈ ∂Γ1,2  0,T.

46

In the first row of Figure 3, we present the decoupled solutions U1, U2 and U2 defined by (42).
We show the solutions at different time steps, namely at t  0, t  100Δt, t  200Δt and
t  500Δt. The plotted contours are fully separated since the inside interface is a zero-flux
boundary. This confirms on the one hand the control of the interface and on the other hand the
possibility to simulate different problems on the non-overlapping subdomains D1 ∖ Γ1,2,
D2 ∖ Γ1,2 and Γ1,2, respectively. In the second row of Figure 3, we show the solution of the
problem (42) by interpolating the interface solution (44) using the BIM algorithm.

(a) t  0 (b) t  100t (c) t  200 t (d) t  500 t

(e) t  0 (f) t  100t (g) t  200 t (h) t  500 t
Figure 3: Decoupling vs coupling of local solutions on D1 ∖ Γ1,2, D2 ∖ Γ1,2 and on Γ1,2.

5.2. TEST 2: Interface smoothing
The main goal of this test is to observe the behavior of the interface solution and the

solutions on the neighborhood the inside interfaces. In this experiment, we solve the problem
(42) by interpolating the interface solution. We approximate U1 on D1 ∖ Γ1,2, U2 on D2 ∖ Γ1,2,
and U3 on Γ1,2 such that U3 : U1  U2. The initial solution is generated using a uniform
random variable with values in 0,10−4.
For different diffusion and advection coefficients d1  0.25, a1  0.2, d2  0.2, a2  0.25
and d3  d1  d2/2, a3  a1  a2/2, we present in Figure 4 the evolution of the initial
solution at three time steps t  Δt, t  10Δt and at t  100Δt. In Figure 5, we show the cross
section at x  0.5 for the same solutions above. The expected result is getting a smooth surface
of the two dimensional function, which is the case. For equal coefficients, we refer to the first
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case. The second row of Figure 4 shows a perfect coupling of the solutions. These solution are
geometrically smooth enough to be at least two times continuous and differentiable. Moreover,
it should be stressed that even the starting initial solution is fully irregular and the steady-state
solution is a differentiable surface. Moreover, we pay attention of the reader that the
geometrical asymptotic behavior of the limit solution is in general independent from the choice
of the initial solutions.

(a) t  0 (b) t  1 t

(c) t  10 t (d) t  100 t
Figure 4: Interface smoothing solutions U1on D1 ∖ Γ1,2, U2D2 ∖ Γ1,2 and U3on Γ1,2.

5.3. TEST 3: Convergence accuracy
In this test, we numerically accurate the combined method FTCS-BIM for solving

evolutionary IBV problems. We compute the computational convergence rate CCO by solving
U1 on D1 ∖ Γ1,2, U2 on D2 ∖ Γ1,2, and U3  U1  U2/2 on Γ1,2:

P3 :

Ut
1  d1ΔU1  a1∇U1 for x, t ∈ D1  T,

Ut
2  d2ΔU2  a2∇U2 for x, t ∈ D2  T,

Ut
3  d3ΔU3  a3∇U3 for x, t ∈ Γ1,2  T.

47

We compare the solution of (47) by interpolating the interface solution with the solution of

Ut  d ΔU  a ∇U for x, t ∈ D  T, 48

where Uk is the projection of U on  for k  1,2,3 and  represents the subdomains D1 ∖ Γ1,2,



Numerical Solution of Stochastic PDSs With Additive Noise on Overlapping Subdomains 69

D2 ∖ Γ1,2, and Γ1,2. We set
dD1∖Γ1,2

 d1; dD2∖Γ1,2
 d2; dΓ1,2

 d1  d2/2, 49

and
aD1∖Γ1,2

 d1; aD2∖Γ1,2
 a2; aΓ1,2∖∂Γ1,2

 a1  a2/2, 50

(a) t  0 (b) t  1 t

(c) t  10 t (d) t  100 t
Figure 5: Cross section solutions at x  0.5.

Under the Dirichlet boundary conditions and the following initial solution
Ux, 0  exp−30x − 0.52  y − 0.52. 51

we distinguish two cases:
A : Using equal coefficients: d1  d2  0.25 and a1  a2  0.2.
B : Using different coefficients d1  0.25, a1  0.2 and d2  0.2, a2  0.25.
We assume moreover the following interface equality
U1 ∣ Γd

 U3 ∣ Γd
and U2 ∣ Γu  U3 ∣ Γu . 52

The interface solution on ∂Γ1,2 is defined by
w1,3x, t : U1x, t  U3x, t on x, t ∈ Γu  0,T, 53

w2,3x, t : U2x, t  U3x, t on x, t ∈ Γd  0,T. 54
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As can be remarked in Table 1, the method FTCS-BIM assure the second order in space.
The first order CCO is guaranteed, since the used temporal step is chosen using the CFL
stability condition: Δt  0.95ΔtCFL, where ΔtCFL  Δx2/4maxdk,ak.

Table 1 : Spatial L2-errors for the cases A & B.

Nx case A

L2-error
CCO case B

L2-error
CCO

25 2.085266E-3 - 3.072218E-3 -
50 1.977757E-4 - 5.322484E-4 -
100 2.970599E-5 3.0666 1.243835E-4 2.3132
200 4.084231E-6 2.7988 3.014155E-5 2.0711
400 7.294578E-7 2.6738 7.511688E-6 2.0247

5.4. TEST 4: Solving overlapping SPDEs
In this test we solve the stochastic partial differential system

P4 :

ut
1  d1ΔU1 − a1∇u1  11 on D1 ∖ Γ1,2,

ut
2  d2ΔU2 − a2∇u2  22 on D2 ∖ Γ1,2,

ut
3  d3ΔU3 − a3∇u3  11  22 on Γ1,2.

55

We numerically approximate the solution of the system (6) using the first order Milstein
scheme. We generate a initial solution using a uniform distributed random variable. Thereafter,
we approximate the numerical solutions u1 ∣D1∖Γ1,2

, u2 ∣D2∖Γ1,2
, and  tu1  1 −  tu2 ∣ Γ1,2

,
for  t  UR0,1. Similarly to the third test, we distinguish two cases:
A : Using equal coefficients: d1  d2  0.25 and a1  a2  0.2.
B : Using different coefficients d1  0.25, a1  0.2 and d2  0.2, a2  0.25.
We assume moreover the following interface equality and set
dD1∖Γ1,2

 d1; dD2∖Γ1,2
 d2; dΓ1,2

 d1  d2/2, 56

and
aD1∖Γ1,2

 d1; aD2∖Γ1,2
 a2; aΓ1,2∖∂Γ1,2

 a1  a2/2, 57

In Figure 6, we present in the first row the evolution of the solution at three time steps od
the case A: At t  100Δt, t  200Δt and t  5000Δt. In the second row, we show the solution
of the case B. Figure 7 shows a comparison overview of the initial and the Mean solution of an
M  500 realizations at time t  5000Δt.
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(a) A, t  100t (b) A, t  200t (c) A, t  5000 t

(d) B, t  100t (e) B, t  200t (f) B, t  5000 t
Figure 6: SPDEs solutions using equal and different advection-diffusion coefficients.

(a) B, t  0 (b) B, t  5000 t, M  500
Figure 7: Comparison of the initial and mean solution at t  5000 t of M  500 realizations.



72 M. ZAHRI

6. Concluding Remarks

We have developed a new numerical technique for solving stochastic partial differential
systems on overlapping subdomains. We transformed the original problem into an equivalent
system on non-overlapping subdomains. In addition, we numerically examined this
computational approach on overlapped subdomains with nonlinear (curved) boundaries. To
accurate our scheme, we experimented with various geometrical tests using the combination of
deterministic and stochastic numerical techniques. Namely the domain decomposition method,
the method of lines and the barycentric interpolation method. The stochastic partial differential
equations are solved using the first order Itô-Taylor scheme or also the Milstein scheme.
Numerically, this method could be easily extended to real applications using higher-order or
more suitable schemes such as Crank Nicolson, Relaxation, finite volume, finite elements and
meshless. Finally, real-life applications are our future studies especially the treatment of
problems in medicine or oceanographic pollution problems.
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